Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Synthesis and immobilization of caltrop cupric particles onto a Si substrate using X-ray radiolysis directly from a liquid solution of Cu(COOCH3)2 is demonstrated. Caltrop cupric oxide particles are formed in the X-ray radiolysis of aqueous solutions of Cu(COOCH3)2, which also contain methanol, ethanol, 2-propanol or 1-propanol as ^\bulletOH scavenger. The blade lengths of the caltrop particles are dependent on the alcohol chain length. In particular, it was found that an alkyl alcohol whose chain length is longer than four is unable to synthesize any particles in aqueous solutions of Cu(COOCH3)2 in X-ray radiolysis. These results are attributed to the alkyl alcohol chain length influencing the rate of reaction of radicals and determines the solvable ratio of its alcohol into water. In addition, it was found that the synthesized particle geometric structure and composition can also be controlled by the pH of the aqueous solution in the X-ray radiolysis. This study may open a door to understanding and investigating a novel photochemical reaction route induced under X-ray irradiation. The development of the X-ray radiolysis process enables us to achieve the rapid and easy process of synthesis and immobilization of higher-order nano/microstructure consisting of various materials.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds