Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Wavelength-modulated diffraction was developed by Iwasaki, Yurugi & Yoshimura [Acta Cryst. (1999), A55, 864–870] as a method for phase determination, in which the intensity of Bragg reflections is recorded using radiation whose wavelength is changing continually over a range in the vicinity of the absorption edge of an atom in the crystal. Using a ferrocene derivative crystal (chemical formula C36H32O7Fe, space group P21/a) with the Fe atoms chosen as anomalous scatterers, measurements were made of the intensity gradient dI/dλ of the reflections with an imaging plate as a detector on a synchrotron radiation source at Ritsumeikan University. In the case of a centrosymmetric crystal, the phase of the structure factor could be derived by measuring only the sign of dI/dλ at one wavelength in the range. Of 104 reflections measured, the correct phase was assigned to 101 reflections. A discussion is given on the errors involved and on the limits of application of the method.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds