Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The theoretical investigation of double-slit dynamical X-ray diffraction in ideal crystals shows that, on the exit surface of crystals, interference fringes similar to Young's fringes are formed. An expression for the period of the fringes was obtained. The visibility of the fringes depending on temporal and spatial coherent properties of the incident beam is studied. The polarization state of the incident beam also affects the visibility of the fringes, which in turn depends on the size of the slits. The deviation from Bragg's exact angle causes a shift of the fringes and can also affect the amplitude of the intensity. One of the parameters on which the visibility of the fringes depends is the source-crystal distance. The proposed scheme can be used as a Rayleigh X-ray interferometer. Use of the scheme as a Michelson X-ray stellar interferometer is also possible.

Subscribe to Acta Crystallographica Section A: Foundations and Advances

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds