Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
X-ray six-beam pinhole topograph images were obtained for a silicon crystal with incident synchrotron X-rays. The polarization state of X-rays incident on the sample crystal was controlled by using a four-quadrant phase-retarder system [Okitsu et al. (2002). Acta Cryst. A58, 146-154] that can be rotated around the transmitted beam axis to generate arbitrarily polarized X-rays. Quantitative agreement was found between the experimental and computer-simulated topograph images based on the n-beam Takagi-Taupin dynamical theory under the assumption that the polarization state of the incident X-rays was identical with the experiment. This result confirmed the validity of the computer algorithm to solve the n-beam dynamical theory and the proper operation of the rotating four-quadrant phase-retarder system simultaneously.

Subscribe to Acta Crystallographica Section A: Foundations and Advances

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds