Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Diffraction patterns for polydisperse systems of crystalline grains of cubic materials were calculated considering some common grain shapes: sphere, cube, tetrahedron and octahedron. Analytical expressions for the Fourier transforms and corresponding column-length distributions were calculated for the various crystal shapes considering two representative examples of size-distribution functions: lognormal and Poisson. Results are illustrated by means of pattern simulations for a f.c.c. material. Line-broadening anisotropy owing to the different crystal shapes is discussed. The proposed approach is quite general and can be used for any given crystallite shape and different distribution functions; moreover, the Fourier transform formalism allows the introduction in the line-profile expression of other contributions to line broadening in a relatively easy and straightforward way.

Subscribe to Acta Crystallographica Section A: Foundations and Advances

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds