Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Small-angle scattering formulae for crystalline assemblies of arbitrary particles are derived from powder diffraction theory using the decoupling approximation. To do so, the pseudo-lattice factor is defined, and methods to overcome the limitations of the decoupling approximation are investigated. Further, approximated equations are suggested for the diffuse scattering from various defects of the first kind due to non-ideal particles, including size polydispersity, orientational disorder and positional fluctuation about their ideal positions. Calculated curves using the formalism developed herein are compared with numerical simulations computed without any approximation. For a finite-sized assembly, the scattering from the whole domain of the assembly must also be included, and this is derived using the correlation function approach.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds