Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Enterococcus faecalis haem catalase was crystallized using lithium sulfate at neutral pH. The crystals belong to space group R3, with unit-cell parameters a = b = 236.9, c = 198.1 Å. The three-dimensional structure was determined by molecular replacement using a subunit of the Proteus mirabilis catalase structure. It was refined against 2.3 Å synchrotron data to a free R factor of 21.8%. Like other catalases, the E. faecalis catalase is a homotetramer with a fold and structure similar to those of its structurally closest relative P. mirabilis. The solvent structure in the active site is identical in the four subunits but differs from that found in other catalases. The structural consequences of the Ramachandran outlier Ser196 are discussed.

Supporting information

PDB reference: catalase, 1si8, r1si8sf


Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds