Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Purine-nucleoside phosphorylase (PNP) deficiency in humans leads to inhibition of the T-cell response. Potent membrane-permeable inhibitors of this enzyme are therefore considered to be potential immunosuppressive agents. The binary complex of the trimeric calf spleen phosphorylase, which is highly homologous to human PNP, with the potent ground-state analogue inhibitor 9-(5,5-difluoro-5-phosphonopentyl)guanine (DFPP-G) was crystallized in the cubic space group P213, with unit-cell parameter a = 93.183 Å and one monomer per asymmetric unit. High-resolution X-ray diffraction data were collected using synchrotron radiation (EMBL Outstation, DESY, Hamburg, station X13). The crystal structure was refined to a resolution of 2.2 Å and R and Rfree values of 19.1 and 24.2%, respectively. The crystal structure confirms that DFPP-G acts as a multisubstrate analogue inhibitor as it binds to both nucleoside- and phosphate-binding sites. The structure also provides the answers to some questions regarding the substrate specificity and molecular mechanism of trimeric PNPs. The wide access to the active-site pocket that was observed in the reported structure as a result of the flexibility or disorder of two loops (residues 60–65 and 251–266) strongly supports the random binding of substrates. The putative hydrogen bonds identified in the base-binding site indicate that N(1)—H and not O6 of the purine base defines the specificity of trimeric PNPs. This is confirmed by the fact that the contact of guanine O6 with Asn243 Oδ1 is not a direct contact but is mediated by a water molecule. Participation of Arg84 in the binding of the phosphonate group experimentally verifies the previous suggestion [Blackburn & Kent (1986), J. Chem. Soc. Perkin Trans. I, pp. 913–917; Halazy et al. (1991), J. Am. Chem. Soc. 113, 315–317] that fluorination of alkylphosphonates yields compounds with properties that suitably resemble those of phosphate esters and in turn leads to optimized interactions of such analogues with the phosphate-binding site residues. DFPP-G shows a K_{\rm i}^{\rm app} in the nanomolar range towards calf and human PNPs. To date, no high-resolution X-ray structures of these enzymes with such potent ground-state analogue inhibitors have been available in the Protein Data Bank. The present structure may thus be used in the rational structure-based design of new PNP inhibitors with potential medical applications.

Supporting information

PDB reference: PNP–DFPP-G complex, 1v48, r1v48sf


Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds