Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A method for the deconvolution of the convolution square of a symmetrical function with a limited range of definition is presented. The solution function is approximated by a number of equidistant step functions. This allows the analytical computation of the integrals of overlap in one-dimensional (lamellar) symmetry, in two-dimensional (cylindrical) symmetry and in three-dimensional (spherical) symmetry. A special iterative linearized weighted-least-squares technique solves the non-linear convolution square-root problem without any a priori information on the solution. As an application, the electron or scattering length density ρ(r) from the distance distribution function p(r) of small-angle scattering is computed as well as the propagation of the statistical error from the input. The influence of imperfect realization of the symmetry conditions is discussed. Numerical instabilities that appear under certain conditions can easily be removed by a stabilization procedure.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds