Download citation
Download citation
link to html
The reaction of Cp3Y with 2,4-cyclo­penta­diene-1-ethanol and recrystallization from 1,2-di­methoxy­ethane (dme) gave the title compound, [CpY(μ-η51–C5H4CH2CH2O)(dme)]2 or [Y2(C5H5)2(C7H8O)2(C4H10O2)2]. Bond lengths and angles of the dimeric complex are comparable with similar cyclo­penta­dienyl and μ-alkoxo complexes of yttrium. The complex has crystallographically imposed inversion symmetry and features two Y atoms that exist in distorted trigonal bi­pyramidal coordination geometries.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802020159/cm6023sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802020159/cm6023Isup2.hkl
Contains datablock I

CCDC reference: 202281

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.045
  • wR factor = 0.088
  • Data-to-parameter ratio = 19.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.480 Tmax scaled 0.316 Tmin scaled 0.215

Comment top

The title compound, (I), possesses crystallographically imposed inversion symmetry. Both Y atoms of the dimeric complex are bridged by the two O atoms of the 2-(cyclopentadienyl)ethoxy ligands. The metal centers are coordinated to two cyclopentadienyl rings and three O atoms, two cyclopentadienylethoxide O atoms and one O atom of the dme ligand. The coordination geometry around each Y atom corresponds to a distorted trigonal bipyramid. The distances of the metal centers to the bridging O atoms are longer than those reported for the dimeric alkoxides [(Me3SiC5H4)2Y(µ-OMe)]2 [2.217 (3) and 2.233 (3) Å; Evans et al., 1992] and [(MeC5H4)2Y(µ-OiPr)]2 [2.2228 (19) and 2.2432 (19) Å; Li et al., 2000], but comparable with the values found in [(MeC5H4)2Y(µ-OCHCH2)]2 [2.275 (3) and 2.290 (3) Å; Evans et al., 1986].

Only one O atom of the bidentate 1,2-dimethoxyethane (dme) ligand is coordinated to the metal center. Compared to the Y—O bond lengths of the alkoxide O atoms, the distance between the metal center and the dme O atom is much longer. A similar value was observed for the Y—O distance to THF in Cp3Y(THF) [2.451 (4) Å; Rogers et al., 1981]. A shorter distance was reported for the alkoxide (Cp*2Y)2(µ-OCH2CH2O)(THF)2 [Y—OTHF 2.398 (5) Å; Deelman et al., 1995].

The distances of the Y atom to the cyclopentadienyl-ring centroids are in good agreement with the distances found in Cp3Y(THF) (2.438, 2.453 and 2.454 Å; Rogers et al., 1981).

The O—Y—Oi [symmetry code: (i) 1 − x, 1 − y, 1 − z] bond angle of the central Y2O2 ring is somewhat smaller than in the above described alkoxide complexes [(Me3SiC5H4)2Y(µ-OMe)]2 [73.6 (1)°; Evans et al., 1992, [(MeC5H4)2Y(µ-O-iPr)]2 (74.86 (7)°) (Li et al., 2000) and [(MeC5H4)2Y(µ-OCHCH2)]2 (73.1 (1)°) (Evans et al., 1986). The Y2O2 ring is perfectly planar.

Due to the trigonal bipyramidal coordination geometry of the metal atom the angle formed by the central yttrium atom and the two ring centroids is smaller than in the related tetrahedral complex [(MeC5H4)2Y(µ-OiPr)]2 (124.0°; Li et al., 2000).

Experimental top

A solution of 2,4-cyclopentadiene-1-ethanol (0.22 g, 2.0 mmol; Ohta et al., 1977) in THF (5 ml) was added to Cp3Y (0.57 g, 2.0 mmol) in THF (10 ml) and the mixture was stirred for 15 min at ambient temperature until Cp3Y was completely dissolved. The solution was concentrated to 3 ml and hexane (10 ml) was added. After the centrifugation of the mixture, the formed white microcrystalline solid of the title compound was separated by decantation, washed with hexane (10 ml) and dried in vacuum (yield 0.51 g, 72%). Suitable crystals were obtained by recrystallization from dme (m.p. 385–388 K). Spectroscopic analysis, IR (Nujol, ν cm−1): 3060 (w), 1360 (m), 1040 (s), 890 (m), 780 (s), 730 (m), 520 (w); elemental analysis, calculated for C32H46O6Y2: Y 25.26%; found: 25.08%.

Refinement top

The H atoms were placed in calculated positions and assigned to an isotropic displacement parameter of 0.08 Å2. The idealized CH3 groups were allowed to rotate about their C—O bond. The geometrical aspects of the structure were analyzed by using PLATON (Spek, 2001).

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, Pritzkow, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
(I) top
Crystal data top
[Y2(C5H5)2(C7H8O)2(C4H10O2)2]Dx = 1.537 Mg m3
Mr = 704.51Melting point: 385 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.6073 (2) ÅCell parameters from 5194 reflections
b = 11.2146 (1) Åθ = 2.2–30.6°
c = 15.7840 (1) ŵ = 3.84 mm1
β = 92.751 (1)°T = 173 K
V = 1521.83 (4) Å3Block, colorless
Z = 20.40 × 0.38 × 0.30 mm
F(000) = 728
Data collection top
Siemens SMART CCD
diffractometer
3482 independent reflections
Radiation source: fine-focus sealed tube2489 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.448, Tmax = 0.659k = 1314
11359 measured reflectionsl = 1520
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0324P)2]
where P = (Fo2 + 2Fc2)/3
3482 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Y2(C5H5)2(C7H8O)2(C4H10O2)2]V = 1521.83 (4) Å3
Mr = 704.51Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.6073 (2) ŵ = 3.84 mm1
b = 11.2146 (1) ÅT = 173 K
c = 15.7840 (1) Å0.40 × 0.38 × 0.30 mm
β = 92.751 (1)°
Data collection top
Siemens SMART CCD
diffractometer
3482 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2489 reflections with I > 2σ(I)
Tmin = 0.448, Tmax = 0.659Rint = 0.081
11359 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.01Δρmax = 0.59 e Å3
3482 reflectionsΔρmin = 0.47 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Y0.61001 (3)0.60490 (3)0.57293 (2)0.01504 (10)
O10.6236 (2)0.43653 (19)0.49266 (16)0.0176 (5)
O20.4196 (3)0.7076 (2)0.66086 (16)0.0205 (6)
O30.1975 (3)0.9047 (2)0.65997 (17)0.0264 (6)
C10.7646 (4)0.4285 (3)0.6556 (2)0.0191 (8)
C20.6467 (4)0.4592 (3)0.7104 (3)0.0226 (8)
H20.56030.41290.72140.080*
C30.6819 (4)0.5724 (3)0.7457 (3)0.0247 (8)
H30.62420.61260.78510.080*
C40.8188 (4)0.6136 (3)0.7112 (3)0.0271 (8)
H40.86720.68630.72290.080*
C50.8702 (4)0.5249 (3)0.6555 (3)0.0230 (8)
H50.95860.52930.62400.080*
C60.7703 (4)0.3210 (3)0.5991 (3)0.0230 (8)
H6A0.68710.26650.61200.080*
H6B0.86850.27980.60940.080*
C70.7530 (4)0.3583 (3)0.5068 (3)0.0220 (8)
H7A0.84730.39820.49080.080*
H7B0.73870.28810.47140.080*
C80.8032 (4)0.6905 (3)0.4585 (3)0.0261 (9)
H80.86730.63440.43440.080*
C90.8391 (4)0.7565 (3)0.5322 (3)0.0250 (9)
H90.93120.75210.56540.080*
C100.7114 (4)0.8306 (3)0.5472 (3)0.0257 (9)
H100.70370.88350.59220.080*
C110.5971 (4)0.8102 (3)0.4818 (3)0.0240 (9)
H110.50080.84770.47590.080*
C120.6536 (4)0.7235 (3)0.4271 (3)0.0231 (8)
H120.60160.69330.37870.080*
C130.2977 (4)0.6365 (3)0.6945 (3)0.0288 (9)
H13A0.32260.61950.75320.080*
H13B0.28810.56310.66340.080*
H13C0.20130.67940.68930.080*
C140.4408 (4)0.8195 (3)0.7056 (3)0.0250 (9)
H14A0.55100.83660.71330.080*
H14B0.39830.81310.76120.080*
C150.3619 (4)0.9197 (3)0.6575 (3)0.0275 (9)
H15A0.39230.99550.68290.080*
H15B0.39260.91950.59920.080*
C160.1182 (4)0.9757 (3)0.5971 (3)0.0306 (10)
H16A0.14581.05790.60560.080*
H16B0.00800.96640.60140.080*
H16C0.14720.95070.54190.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y0.01198 (15)0.01404 (15)0.01890 (18)0.00055 (14)0.00144 (11)0.00072 (17)
O10.0129 (11)0.0167 (11)0.0231 (15)0.0003 (9)0.0015 (10)0.0002 (10)
O20.0196 (12)0.0203 (12)0.0218 (16)0.0007 (10)0.0023 (11)0.0031 (11)
O30.0197 (12)0.0256 (13)0.0340 (17)0.0022 (11)0.0017 (11)0.0055 (13)
C10.0187 (17)0.0176 (17)0.020 (2)0.0036 (13)0.0071 (15)0.0005 (14)
C20.0223 (18)0.0236 (19)0.021 (2)0.0016 (15)0.0037 (16)0.0033 (16)
C30.0281 (19)0.029 (2)0.017 (2)0.0052 (15)0.0046 (16)0.0032 (16)
C40.0290 (19)0.0221 (18)0.029 (2)0.0010 (17)0.0105 (17)0.0001 (18)
C50.0162 (17)0.0273 (19)0.025 (2)0.0048 (15)0.0025 (16)0.0025 (17)
C60.0213 (18)0.0183 (17)0.029 (2)0.0027 (14)0.0044 (16)0.0029 (17)
C70.0159 (17)0.0219 (17)0.028 (2)0.0025 (13)0.0019 (16)0.0000 (16)
C80.0213 (18)0.0217 (18)0.036 (3)0.0035 (15)0.0107 (17)0.0041 (18)
C90.0173 (17)0.0214 (18)0.036 (3)0.0072 (14)0.0001 (16)0.0061 (18)
C100.0230 (19)0.0185 (18)0.036 (3)0.0080 (15)0.0041 (17)0.0000 (17)
C110.0201 (18)0.0163 (17)0.036 (3)0.0037 (14)0.0037 (17)0.0066 (17)
C120.0229 (19)0.0224 (18)0.024 (2)0.0097 (15)0.0021 (16)0.0057 (16)
C130.030 (2)0.026 (2)0.031 (3)0.0033 (15)0.0070 (18)0.0061 (17)
C140.0239 (19)0.0285 (19)0.023 (2)0.0009 (16)0.0005 (16)0.0092 (17)
C150.0223 (18)0.023 (2)0.037 (3)0.0028 (15)0.0023 (17)0.0040 (17)
C160.030 (2)0.028 (2)0.034 (3)0.0010 (16)0.0020 (19)0.0007 (18)
Geometric parameters (Å, º) top
Y—Cg12.4537 (19)C4—C51.412 (5)
Y—Cg22.4260 (17)C4—H40.9300
Y—O1i2.265 (2)C5—H50.9300
Y—O12.280 (2)C6—C71.516 (5)
Y—O22.481 (2)C6—H6A0.9700
Y—C12.687 (3)C6—H6B0.9700
Y—C22.722 (4)C7—H7A0.9700
Y—C32.792 (4)C7—H7B0.9700
Y—C42.761 (4)C8—C91.401 (6)
Y—C52.690 (3)C8—C121.406 (5)
Y—C82.690 (4)C8—H80.9300
Y—C92.704 (3)C9—C101.408 (5)
Y—C102.714 (3)C9—H90.9300
Y—C112.714 (3)C10—C111.410 (6)
Y—C122.700 (4)C10—H100.9300
Y—Yi3.7421 (7)C11—C121.403 (5)
O1—C71.427 (4)C11—H110.9300
O1—Yi2.265 (2)C12—H120.9300
O2—C131.440 (4)C13—H13A0.9600
O2—C141.447 (4)C13—H13B0.9600
O3—C161.421 (5)C13—H13C0.9600
O3—C151.427 (4)C14—C151.500 (5)
C1—C21.407 (5)C14—H14A0.9700
C1—C51.413 (5)C14—H14B0.9700
C1—C61.502 (5)C15—H15A0.9700
C2—C31.414 (5)C15—H15B0.9700
C2—H20.9300C16—H16A0.9600
C3—C41.400 (5)C16—H16B0.9600
C3—H30.9300C16—H16C0.9600
Cg1—Y—Cg2120.80 (6)C13—O2—C14112.2 (3)
Cg1—Y—O194.49 (7)C13—O2—Y117.5 (2)
Cg1—Y—O1i133.80 (7)C14—O2—Y127.19 (19)
Cg1—Y—O293.85 (7)C16—O3—C15111.0 (3)
Cg2—Y—O1105.56 (7)C2—C1—C5107.3 (3)
Cg2—Y—O1i105.33 (7)C2—C1—C6127.3 (3)
Cg2—Y—O2104.72 (7)C5—C1—C6125.0 (3)
O1i—Y—O169.17 (9)C2—C1—Y76.3 (2)
O1i—Y—O275.83 (8)C5—C1—Y74.89 (19)
O1—Y—O2138.45 (8)C6—C1—Y109.4 (2)
O1i—Y—C1118.62 (9)C1—C2—C3108.3 (3)
O1—Y—C167.84 (10)C1—C2—Y73.5 (2)
O2—Y—C1113.26 (10)C3—C2—Y77.9 (2)
O1i—Y—C5148.55 (10)C1—C2—H2125.8
O1—Y—C585.94 (10)C3—C2—H2125.8
O2—Y—C5116.14 (10)Y—C2—H2114.9
C1—Y—C530.46 (10)C4—C3—C2108.1 (3)
O1i—Y—C8109.27 (11)C4—C3—Y74.2 (2)
O1—Y—C882.67 (10)C2—C3—Y72.4 (2)
O2—Y—C8130.98 (9)C4—C3—H3126.0
C1—Y—C8106.34 (11)C2—C3—H3126.0
C5—Y—C885.25 (12)Y—C3—H3119.3
O1i—Y—C1282.43 (10)C3—C4—C5107.8 (3)
O1—Y—C1285.48 (10)C3—C4—Y76.6 (2)
O2—Y—C12111.75 (10)C5—C4—Y72.2 (2)
C1—Y—C12133.70 (11)C3—C4—H4126.1
C5—Y—C12115.50 (11)C5—C4—H4126.1
C8—Y—C1230.25 (11)Y—C4—H4117.1
O1i—Y—C9131.44 (11)C4—C5—C1108.5 (3)
O1—Y—C9109.33 (10)C4—C5—Y77.8 (2)
O2—Y—C9110.47 (10)C1—C5—Y74.65 (19)
C1—Y—C9103.21 (11)C4—C5—H5125.8
C5—Y—C974.04 (11)C1—C5—H5125.8
C8—Y—C930.10 (12)Y—C5—H5114.0
C12—Y—C949.83 (12)C1—C6—C7110.1 (3)
O1i—Y—C10114.06 (10)C1—C6—H6A109.6
O1—Y—C10131.59 (10)C7—C6—H6A109.6
O2—Y—C1082.89 (9)C1—C6—H6B109.6
C1—Y—C10127.15 (11)C7—C6—H6B109.6
C5—Y—C1096.73 (11)H6A—C6—H6B108.2
C8—Y—C1049.71 (11)O1—C7—C6111.1 (3)
C12—Y—C1049.79 (12)O1—C7—H7A109.4
C9—Y—C1030.11 (10)C6—C7—H7A109.4
O1i—Y—C1185.35 (10)O1—C7—H7B109.4
O1—Y—C11114.19 (11)C6—C7—H7B109.4
O2—Y—C1183.75 (9)H7A—C7—H7B108.0
C1—Y—C11152.71 (10)C9—C8—C12108.4 (3)
C5—Y—C11123.47 (11)C9—C8—Y75.5 (2)
C8—Y—C1149.63 (10)C12—C8—Y75.3 (2)
C12—Y—C1130.03 (11)C9—C8—H8125.8
C9—Y—C1149.66 (11)C12—C8—H8125.8
C10—Y—C1130.12 (12)Y—C8—H8115.6
O1i—Y—C2107.90 (10)C8—C9—C10108.0 (3)
O1—Y—C286.48 (10)C8—C9—Y74.40 (19)
O2—Y—C283.54 (9)C10—C9—Y75.33 (19)
C1—Y—C230.13 (10)C8—C9—H9126.0
C5—Y—C249.61 (11)C10—C9—H9126.0
C8—Y—C2134.23 (11)Y—C9—H9116.4
C12—Y—C2163.63 (11)C9—C10—C11107.7 (3)
C9—Y—C2120.58 (12)C9—C10—Y74.56 (19)
C10—Y—C2130.78 (12)C11—C10—Y74.94 (19)
C11—Y—C2158.72 (12)C9—C10—H10126.2
O1i—Y—C4153.91 (11)C11—C10—H10126.2
O1—Y—C4114.80 (10)Y—C10—H10116.5
O2—Y—C487.92 (10)C12—C11—C10108.2 (3)
C1—Y—C449.73 (11)C12—C11—Y74.4 (2)
C5—Y—C429.99 (11)C10—C11—Y74.9 (2)
C8—Y—C496.80 (12)C12—C11—H11125.9
C12—Y—C4123.00 (11)C10—C11—H11125.9
C9—Y—C473.23 (12)Y—C11—H11116.8
C10—Y—C483.32 (12)C11—C12—C8107.7 (3)
C11—Y—C4113.43 (11)C11—C12—Y75.5 (2)
C2—Y—C449.09 (11)C8—C12—Y74.5 (2)
O1i—Y—C3124.75 (10)C11—C12—H12126.1
O1—Y—C3114.83 (10)C8—C12—H12126.1
O2—Y—C368.62 (9)Y—C12—H12116.0
C1—Y—C349.30 (10)O2—C13—H13A109.5
C5—Y—C348.93 (11)O2—C13—H13B109.5
C8—Y—C3125.98 (12)H13A—C13—H13B109.5
C12—Y—C3149.75 (11)O2—C13—H13C109.5
C9—Y—C3100.62 (12)H13A—C13—H13C109.5
C10—Y—C3102.12 (12)H13B—C13—H13C109.5
C11—Y—C3129.05 (11)O2—C14—C15111.1 (3)
C2—Y—C329.69 (10)O2—C14—H14A109.4
C4—Y—C329.20 (11)C15—C14—H14A109.4
O1i—Y—Yi34.71 (6)O2—C14—H14B109.4
O1—Y—Yi34.46 (5)C15—C14—H14B109.4
O2—Y—Yi107.93 (6)H14A—C14—H14B108.0
C1—Y—Yi93.45 (7)O3—C15—C14108.9 (3)
C5—Y—Yi118.25 (8)O3—C15—H15A109.9
C8—Y—Yi97.01 (9)C14—C15—H15A109.9
C12—Y—Yi82.66 (8)O3—C15—H15B109.9
C9—Y—Yi127.03 (9)C14—C15—H15B109.9
C10—Y—Yi130.63 (9)H15A—C15—H15B108.3
C11—Y—Yi101.57 (8)O3—C16—H16A109.5
C2—Y—Yi98.55 (8)O3—C16—H16B109.5
C4—Y—Yi143.06 (8)H16A—C16—H16B109.5
C3—Y—Yi126.94 (7)O3—C16—H16C109.5
C7—O1—Yi127.9 (2)H16A—C16—H16C109.5
C7—O1—Y118.9 (2)H16B—C16—H16C109.5
Yi—O1—Y110.83 (9)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Y2(C5H5)2(C7H8O)2(C4H10O2)2]
Mr704.51
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)8.6073 (2), 11.2146 (1), 15.7840 (1)
β (°) 92.751 (1)
V3)1521.83 (4)
Z2
Radiation typeMo Kα
µ (mm1)3.84
Crystal size (mm)0.40 × 0.38 × 0.30
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.448, 0.659
No. of measured, independent and
observed [I > 2σ(I)] reflections
11359, 3482, 2489
Rint0.081
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.088, 1.01
No. of reflections3482
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.47

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, Pritzkow, 1994), SHELXL97.

Selected geometric parameters (Å, º) top
Y—Cg12.4537 (19)Y—C42.761 (4)
Y—Cg22.4260 (17)Y—C52.690 (3)
Y—O1i2.265 (2)Y—C82.690 (4)
Y—O12.280 (2)Y—C92.704 (3)
Y—O22.481 (2)Y—C102.714 (3)
Y—C12.687 (3)Y—C112.714 (3)
Y—C22.722 (4)Y—C122.700 (4)
Y—C32.792 (4)
Cg1—Y—Cg2120.80 (6)Cg2—Y—O1i105.33 (7)
Cg1—Y—O194.49 (7)Cg2—Y—O2104.72 (7)
Cg1—Y—O1i133.80 (7)O1i—Y—O169.17 (9)
Cg1—Y—O293.85 (7)O1i—Y—O275.83 (8)
Cg2—Y—O1105.56 (7)O1—Y—O2138.45 (8)
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds