Download citation
Download citation
link to html
Crystals of uranium iodine phthalocyanine present an example of a disordered commensurate modulated structure of the intergrowth type. The short-range order of both uranium ions and iodine chains [I_3^-]n has been analysed by Reverse Monte Carlo (RMC) simulation of X-ray diffuse scattering. The diffraction pattern of uranium iodine phthalocyanine contains diffuse superstructure reflections. In the routine crystal structure analysis diffuse superstructure reflections may be either omitted or measured and classified along with other Bragg reflections. The crystal structure of uranium iodine phthalocyanine is an example of such ambiguity. The crystal structures of two specimens of [U1-xPc2]I2-y with slightly different composition have been published in the literature with different space groups and unit cells. We have shown that the structure of both specimens differs only in the degree of short-range order and is isostructural with [YbPc2]I2. We have also shown that while the omission of diffuse reflections results in the average crystal structure, the treatment of these reflections as normal Bragg reflections is incorrect and produces the structure averaged over a limited small range.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768103004804/ck0017sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768103004804/ck0017Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768103004804/ck0017IIsup3.hkl
Contains datablock II

CCDC references: 219248; 219249

Computing details top

For both compounds, data collection: CrysAlis 189; cell refinement: CrysAlis 189; data reduction: CrysAlis 189; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

(I) top
Crystal data top
C64H32H0I1.74N16U0.96F(000) = 709
Mr = 1474.37Dx = 1.916 Mg m3
Tetragonal, P4/mccMo Kα radiation, λ = 0.71073 Å
a = 13.997 (2) ŵ = 4.16 mm1
c = 6.523 (1) ÅT = 293 K
V = 1278.0 (3) Å3Irregular, black
Z = 10.37 × 0.13 × 0.13 mm
Data collection top
KM4-CCD
diffractometer
867 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.064
Graphite monochromatorθmax = 29.6°, θmin = 2.9°
Absorption correction: numericalh = 1819
Tmin = 0.438, Tmax = 0.734k = 1918
15699 measured reflectionsl = 78
980 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082Calculated w = 1/[σ2(Fo2) + (0.0313P)2 + 0.9211P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max = 2.708
980 reflectionsΔρmax = 0.47 e Å3
78 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0000 (8)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.00000.00000.2141 (3)0.0503 (6)0.436 (3)
U0.50000.50000.25000.02419 (19)0.479 (3)
N10.5827 (2)0.2731 (2)0.00000.0353 (8)
N20.4402 (2)0.3730 (2)0.00000.0487 (10)
C10.4891 (3)0.2874 (3)0.00000.0364 (9)
C20.4189 (3)0.2095 (3)0.00000.0368 (9)
C30.4299 (4)0.1109 (3)0.00000.0561 (12)
C40.3478 (4)0.0559 (3)0.00000.0734 (17)
C50.2571 (4)0.0975 (3)0.00000.0671 (15)
C60.2460 (3)0.1959 (3)0.00000.0489 (10)
C70.3280 (3)0.2510 (3)0.00000.0367 (8)
C80.3444 (3)0.3541 (3)0.00000.0355 (8)
H30.492 (3)0.083 (3)0.00000.043*
H40.354 (3)0.014 (3)0.00000.043*
H50.200 (3)0.064 (3)0.00000.043*
H60.186 (3)0.232 (3)0.00000.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0456 (3)0.0456 (3)0.0598 (16)0.0000.0000.000
U0.0244 (2)0.0244 (2)0.0237 (3)0.0000.0000.000
N10.0336 (16)0.0335 (16)0.0389 (17)0.0033 (12)0.0000.000
N20.0317 (17)0.0322 (17)0.082 (3)0.0007 (13)0.0000.000
C10.046 (2)0.0321 (17)0.0310 (16)0.0005 (15)0.0000.000
C20.0369 (19)0.038 (2)0.0360 (19)0.0030 (15)0.0000.000
C30.049 (2)0.037 (2)0.082 (4)0.0014 (18)0.0000.000
C40.066 (3)0.033 (2)0.122 (5)0.008 (2)0.0000.000
C50.053 (3)0.045 (3)0.103 (4)0.017 (2)0.0000.000
C60.041 (2)0.047 (2)0.059 (3)0.0050 (18)0.0000.000
C70.042 (2)0.0343 (18)0.0333 (19)0.0046 (15)0.0000.000
C80.0323 (18)0.039 (2)0.0353 (17)0.0034 (14)0.0000.000
Geometric parameters (Å, º) top
I1—I1i0.468 (4)U—Uxiii3.2615 (5)
I1—I1ii2.794 (4)U—Uxvi3.2615 (5)
I1—H5ii3.26 (4)N1—C11.326 (4)
I1—H5iii3.26 (4)N1—C8xv1.334 (5)
I1—H53.26 (4)N2—C81.367 (5)
I1—H5iv3.26 (4)N2—C11.380 (5)
I1—I1v3.2615 (5)N2—Uxiii2.553 (2)
I1—I1vi3.2615 (5)C1—C21.469 (5)
I1—H5vii3.48 (4)C2—C31.389 (6)
I1—H5v3.48 (4)C2—C71.398 (5)
I1—H5i3.48 (4)C3—H30.96 (4)
I1—H5viii3.48 (4)C3—C41.382 (7)
I1—I1ix3.729 (4)C4—H40.98 (4)
I1—C5ii4.094 (5)C4—C51.397 (7)
I1—C5iii4.094 (5)C5—H50.93 (4)
I1—C54.094 (5)C5—C61.387 (6)
U—N2x2.553 (2)C5—I1ii4.094 (5)
U—N22.553 (2)C6—H60.98 (4)
U—N2xi2.553 (2)C6—C71.383 (6)
U—N2xii2.553 (2)C7—C81.461 (5)
U—N2xiii2.553 (2)C8—N1xi1.334 (5)
U—N2xiv2.553 (2)H5—I1ii3.26 (4)
U—N2vii2.553 (2)H5—I1vi3.48 (4)
U—N2xv2.553 (2)H5—I1i3.48 (4)
I1i—I1—I1ii180.0H5ii—I1—C5134.5 (3)
I1i—I1—H5ii115.4 (3)H5iii—I1—C579.0 (7)
I1ii—I1—H5ii64.6 (3)H5—I1—C56.1 (4)
I1i—I1—H5iii115.4 (3)H5iv—I1—C584.2 (7)
I1ii—I1—H5iii64.6 (3)I1v—I1—C5109.95 (3)
H5ii—I1—H5iii79.4 (3)I1vi—I1—C570.05 (3)
I1i—I1—H5115.4 (3)H5vii—I1—C571.8 (6)
I1ii—I1—H564.6 (3)H5v—I1—C5143.5 (7)
H5ii—I1—H5129.2 (6)H5i—I1—C564.0 (5)
H5iii—I1—H579.4 (3)H5viii—I1—C5132.6 (7)
I1i—I1—H5iv115.4 (3)I1ix—I1—C5109.95 (3)
I1ii—I1—H5iv64.6 (3)C5ii—I1—C5140.11 (7)
H5ii—I1—H5iv79.4 (3)C5iii—I1—C583.32 (2)
H5iii—I1—H5iv129.2 (6)N2x—U—N2149.82 (13)
H5—I1—H5iv79.4 (3)N2x—U—N2xi141.72 (13)
I1i—I1—I1v0.0N2—U—N2xi65.92 (5)
I1ii—I1—I1v180.0N2x—U—N2xii65.92 (5)
H5ii—I1—I1v115.4 (3)N2—U—N2xii141.72 (13)
H5iii—I1—I1v115.4 (3)N2xi—U—N2xii87.23 (10)
H5—I1—I1v115.4 (3)N2x—U—N2xiii87.23 (10)
H5iv—I1—I1v115.4 (3)N2—U—N2xiii100.60 (9)
I1i—I1—I1vi180.0N2xi—U—N2xiii65.92 (5)
I1ii—I1—I1vi0.0N2xii—U—N2xiii91.78 (11)
H5ii—I1—I1vi64.6 (3)N2x—U—N2xiv65.92 (5)
H5iii—I1—I1vi64.6 (3)N2—U—N2xiv91.78 (11)
H5—I1—I1vi64.6 (3)N2xi—U—N2xiv149.82 (13)
H5iv—I1—I1vi64.6 (3)N2xii—U—N2xiv100.60 (9)
I1v—I1—I1vi180.0N2xiii—U—N2xiv141.72 (13)
I1i—I1—H5vii57.6 (4)N2x—U—N2vii100.60 (9)
I1ii—I1—H5vii122.4 (4)N2—U—N2vii87.23 (10)
H5ii—I1—H5vii132.3 (14)N2xi—U—N2vii91.78 (11)
H5iii—I1—H5vii67.0 (10)N2xii—U—N2vii65.92 (5)
H5—I1—H5vii77.7 (11)N2xiii—U—N2vii149.82 (13)
H5iv—I1—H5vii148.3 (14)N2xiv—U—N2vii65.92 (5)
I1v—I1—H5vii57.6 (4)N2x—U—N2xv91.78 (11)
I1vi—I1—H5vii122.4 (4)N2—U—N2xv65.92 (5)
I1i—I1—H5v57.6 (4)N2xi—U—N2xv100.60 (9)
I1ii—I1—H5v122.4 (4)N2xii—U—N2xv149.82 (13)
H5ii—I1—H5v67.0 (10)N2xiii—U—N2xv65.92 (5)
H5iii—I1—H5v77.7 (11)N2xiv—U—N2xv87.23 (10)
H5—I1—H5v148.3 (14)N2vii—U—N2xv141.72 (13)
H5iv—I1—H5v132.3 (14)N2x—U—Uxiii129.70 (4)
I1v—I1—H5v57.6 (4)N2—U—Uxiii50.30 (4)
I1vi—I1—H5v122.4 (4)N2xi—U—Uxiii50.30 (4)
H5vii—I1—H5v73.3 (4)N2xii—U—Uxiii129.70 (4)
I1i—I1—H5i57.6 (4)N2xiii—U—Uxiii50.30 (4)
I1ii—I1—H5i122.4 (4)N2xiv—U—Uxiii129.70 (4)
H5ii—I1—H5i148.3 (14)N2vii—U—Uxiii129.70 (4)
H5iii—I1—H5i132.3 (14)N2xv—U—Uxiii50.30 (4)
H5—I1—H5i67.0 (10)N2x—U—Uxvi50.30 (4)
H5iv—I1—H5i77.7 (11)N2—U—Uxvi129.70 (4)
I1v—I1—H5i57.6 (4)N2xi—U—Uxvi129.70 (4)
I1vi—I1—H5i122.4 (4)N2xii—U—Uxvi50.30 (4)
H5vii—I1—H5i73.3 (4)N2xiii—U—Uxvi129.70 (4)
H5v—I1—H5i115.2 (7)N2xiv—U—Uxvi50.30 (4)
I1i—I1—H5viii57.6 (4)N2vii—U—Uxvi50.30 (4)
I1ii—I1—H5viii122.4 (4)N2xv—U—Uxvi129.70 (4)
H5ii—I1—H5viii77.7 (11)Uxiii—U—Uxvi180.0
H5iii—I1—H5viii148.3 (14)C1—N1—C8xv122.8 (3)
H5—I1—H5viii132.3 (14)C8—N2—C1108.5 (3)
H5iv—I1—H5viii67.0 (10)C8—N2—U117.19 (17)
I1v—I1—H5viii57.6 (4)C1—N2—U116.23 (17)
I1vi—I1—H5viii122.4 (4)C8—N2—Uxiii117.19 (17)
H5vii—I1—H5viii115.2 (7)C1—N2—Uxiii116.23 (17)
H5v—I1—H5viii73.3 (4)U—N2—Uxiii79.40 (9)
H5i—I1—H5viii73.3 (4)N1—C1—N2128.4 (3)
I1i—I1—I1ix0.0N1—C1—C2123.3 (3)
I1ii—I1—I1ix180.0N2—C1—C2108.3 (3)
H5ii—I1—I1ix115.4 (3)C3—C2—C7120.9 (4)
H5iii—I1—I1ix115.4 (3)C3—C2—C1131.6 (4)
H5—I1—I1ix115.4 (3)C7—C2—C1107.5 (3)
H5iv—I1—I1ix115.4 (3)H3—C3—C4122 (3)
I1v—I1—I1ix0.0H3—C3—C2120 (3)
I1vi—I1—I1ix180.0C4—C3—C2117.4 (4)
H5vii—I1—I1ix57.6 (4)H4—C4—C3118 (2)
H5v—I1—I1ix57.6 (4)H4—C4—C5120 (2)
H5i—I1—I1ix57.6 (4)C3—C4—C5121.6 (4)
H5viii—I1—I1ix57.6 (4)H5—C5—C6114 (3)
I1i—I1—C5ii109.95 (3)H5—C5—C4125 (3)
I1ii—I1—C5ii70.05 (3)C6—C5—C4121.1 (4)
H5ii—I1—C5ii6.1 (4)H5—C5—I1ii22.1 (11)
H5iii—I1—C5ii84.2 (7)C6—C5—I1ii103.4 (3)
H5—I1—C5ii134.5 (3)C4—C5—I1ii131.3 (3)
H5iv—I1—C5ii79.0 (7)H5—C5—I122.1 (11)
I1v—I1—C5ii109.95 (3)C6—C5—I1103.4 (3)
I1vi—I1—C5ii70.05 (3)C4—C5—I1131.3 (3)
H5vii—I1—C5ii132.6 (7)I1ii—C5—I139.89 (7)
H5v—I1—C5ii64.0 (5)H6—C6—C7115 (3)
H5i—I1—C5ii143.5 (7)H6—C6—C5128 (3)
H5viii—I1—C5ii71.8 (6)C7—C6—C5117.4 (4)
I1ix—I1—C5ii109.95 (3)C6—C7—C2121.6 (3)
I1i—I1—C5iii109.95 (3)C6—C7—C8132.9 (4)
I1ii—I1—C5iii70.05 (3)C2—C7—C8105.5 (3)
H5ii—I1—C5iii79.0 (7)N1xi—C8—N2127.3 (3)
H5iii—I1—C5iii6.1 (4)N1xi—C8—C7122.5 (3)
H5—I1—C5iii84.2 (7)N2—C8—C7110.2 (3)
H5iv—I1—C5iii134.5 (3)C5—H5—I1ii151.8 (14)
I1v—I1—C5iii109.95 (3)C5—H5—I1151.8 (14)
I1vi—I1—C5iii70.05 (3)I1ii—H5—I150.8 (6)
H5vii—I1—C5iii64.0 (5)C5—H5—I1vi145.5 (11)
H5v—I1—C5iii71.8 (6)I1ii—H5—I1vi6.97 (8)
H5i—I1—C5iii132.6 (7)I1—H5—I1vi57.8 (7)
H5viii—I1—C5iii143.5 (7)C5—H5—I1i145.5 (11)
I1ix—I1—C5iii109.95 (3)I1ii—H5—I1i57.8 (7)
C5ii—I1—C5iii83.32 (2)I1—H5—I1i6.97 (8)
I1i—I1—C5109.95 (3)I1vi—H5—I1i64.8 (7)
I1ii—I1—C570.05 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z; (iii) y, x, z; (iv) y, x, z; (v) x, y, z+1/2; (vi) x, y, z1/2; (vii) y, x, z+1/2; (viii) y, x, z+1/2; (ix) x, y, z+1; (x) y+1, x+1, z+1/2; (xi) y, x+1, z; (xii) x, y+1, z+1/2; (xiii) x+1, y+1, z; (xiv) x+1, y, z+1/2; (xv) y+1, x, z; (xvi) x+1, y+1, z+1.
(II) top
Crystal data top
C64H32H0I1.86N16U0.97F(000) = 716
Mr = 1491.98Dx = 1.942 Mg m3
Tetragonal, P4/mccMo Kα radiation, λ = 0.71073 Å
a = 13.995 (2) ŵ = 4.28 mm1
c = 6.513 (1) ÅT = 293 K
V = 1275.5 (3) Å3Irreglar, black
Z = 10.33 × 0.10 × 0.09 mm
Data collection top
KM4-CCD
diffractometer
894 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.064
Graphite monochromatorθmax = 29.6°, θmin = 2.9°
Absorption correction: numericalh = 1918
Tmin = 0.417, Tmax = 0.601k = 1819
16555 measured reflectionsl = 96
979 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094Calculated w = 1/[σ2(Fo2) + (0.0424P)2 + 1.1429P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max = 2.498
979 reflectionsΔρmax = 0.49 e Å3
78 parametersΔρmin = 0.41 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0000 (9)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.00000.00000.2147 (2)0.0479 (5)0.466 (4)
U0.50000.50000.25000.0226 (2)0.484 (4)
N10.5827 (2)0.2730 (2)0.00000.0332 (8)
N20.4401 (2)0.3731 (2)0.00000.0468 (10)
C10.4890 (3)0.2873 (3)0.00000.0338 (9)
C20.4190 (3)0.2095 (3)0.00000.0340 (9)
C30.4301 (4)0.1112 (3)0.00000.0538 (13)
C40.3478 (4)0.0558 (4)0.00000.0709 (18)
C50.2569 (4)0.0972 (4)0.00000.0638 (16)
C60.2457 (3)0.1955 (3)0.00000.0467 (11)
C70.3279 (3)0.2511 (3)0.00000.0346 (9)
C80.3445 (3)0.3537 (3)0.00000.0326 (8)
H30.491 (3)0.083 (4)0.00000.039*
H40.352 (3)0.014 (3)0.00000.039*
H50.201 (3)0.065 (3)0.00000.039*
H60.186 (3)0.231 (3)0.00000.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0441 (3)0.0441 (3)0.0554 (14)0.0000.0000.000
U0.0225 (2)0.0225 (2)0.0228 (3)0.0000.0000.000
N10.0309 (17)0.0314 (17)0.0373 (17)0.0038 (12)0.0000.000
N20.0275 (17)0.0330 (19)0.080 (3)0.0005 (14)0.0000.000
C10.042 (2)0.0297 (18)0.0301 (16)0.0017 (15)0.0000.000
C20.034 (2)0.033 (2)0.0353 (19)0.0030 (14)0.0000.000
C30.046 (3)0.033 (2)0.082 (4)0.0009 (18)0.0000.000
C40.062 (3)0.031 (2)0.120 (5)0.006 (2)0.0000.000
C50.051 (3)0.043 (3)0.097 (4)0.017 (2)0.0000.000
C60.039 (2)0.045 (2)0.056 (3)0.0060 (19)0.0000.000
C70.039 (2)0.0336 (19)0.0315 (18)0.0053 (15)0.0000.000
C80.0315 (19)0.033 (2)0.0334 (17)0.0035 (14)0.0000.000
Geometric parameters (Å, º) top
I1—I1i0.460 (3)U—Uxii3.2565 (5)
I1—I1ii2.797 (3)U—Uxvi3.2565 (5)
I1—I1iii3.2565 (5)N1—C11.326 (5)
I1—I1iv3.2565 (5)N1—C8xiv1.340 (5)
I1—H5v3.28 (4)N2—C81.365 (5)
I1—H5vi3.28 (4)N2—C11.383 (5)
I1—H5ii3.28 (4)N2—Uxii2.551 (3)
I1—H53.28 (4)C1—C21.464 (5)
I1—H5vii3.50 (4)C2—C31.384 (6)
I1—H5viii3.50 (4)C2—C71.403 (6)
I1—H5i3.50 (4)C3—H30.94 (4)
I1—H5iii3.50 (4)C3—C41.388 (7)
I1—I1ix3.716 (3)C4—H40.97 (4)
I1—C5v4.091 (5)C4—C51.398 (8)
I1—C5vi4.091 (5)C5—H50.90 (4)
I1—C5ii4.091 (5)C5—C61.384 (7)
U—N22.551 (3)C5—I1ii4.091 (5)
U—N2x2.551 (3)C6—H60.98 (5)
U—N2xi2.551 (3)C6—C71.389 (6)
U—N2xii2.551 (3)C7—C81.455 (5)
U—N2xiii2.551 (3)C8—N1xv1.340 (5)
U—N2xiv2.551 (3)H5—I1ii3.28 (4)
U—N2xv2.551 (3)H5—I1iv3.50 (4)
U—N2vii2.551 (3)H5—I1i3.50 (4)
I1i—I1—I1ii180.0I1iii—I1—C5ii109.99 (3)
I1i—I1—I1iii0.0I1iv—I1—C5ii70.01 (3)
I1ii—I1—I1iii180.0H5v—I1—C5ii79.2 (8)
I1i—I1—I1iv180.0H5vi—I1—C5ii84.0 (8)
I1ii—I1—I1iv0.0H5ii—I1—C5ii5.9 (5)
I1iii—I1—I1iv180.0H5—I1—C5ii134.7 (4)
I1i—I1—H5v115.3 (3)H5vii—I1—C5ii132.8 (7)
I1ii—I1—H5v64.7 (3)H5viii—I1—C5ii71.6 (6)
I1iii—I1—H5v115.3 (3)H5i—I1—C5ii143.4 (7)
I1iv—I1—H5v64.7 (3)H5iii—I1—C5ii63.9 (6)
I1i—I1—H5vi115.3 (3)I1ix—I1—C5ii109.99 (3)
I1ii—I1—H5vi64.7 (3)C5v—I1—C5ii83.30 (2)
I1iii—I1—H5vi115.3 (3)C5vi—I1—C5ii83.29 (2)
I1iv—I1—H5vi64.7 (3)N2—U—N2x91.78 (12)
H5v—I1—H5vi129.5 (7)N2—U—N2xi141.62 (14)
I1i—I1—H5ii115.3 (3)N2x—U—N2xi100.66 (10)
I1ii—I1—H5ii64.7 (3)N2—U—N2xii100.66 (10)
I1iii—I1—H5ii115.3 (3)N2x—U—N2xii141.62 (14)
I1iv—I1—H5ii64.7 (3)N2xi—U—N2xii91.78 (12)
H5v—I1—H5ii79.5 (3)N2—U—N2xiii149.88 (14)
H5vi—I1—H5ii79.5 (3)N2x—U—N2xiii65.95 (5)
I1i—I1—H5115.3 (3)N2xi—U—N2xiii65.96 (5)
I1ii—I1—H564.7 (3)N2xii—U—N2xiii87.13 (11)
I1iii—I1—H5115.3 (3)N2—U—N2xiv65.96 (5)
I1iv—I1—H564.7 (3)N2x—U—N2xiv87.13 (11)
H5v—I1—H579.5 (3)N2xi—U—N2xiv149.88 (14)
H5vi—I1—H579.5 (3)N2xii—U—N2xiv65.95 (5)
H5ii—I1—H5129.5 (7)N2xiii—U—N2xiv91.77 (12)
I1i—I1—H5vii57.9 (4)N2—U—N2xv65.95 (5)
I1ii—I1—H5vii122.1 (4)N2x—U—N2xv149.88 (14)
I1iii—I1—H5vii57.9 (4)N2xi—U—N2xv87.13 (11)
I1iv—I1—H5vii122.1 (4)N2xii—U—N2xv65.96 (5)
H5v—I1—H5vii147.9 (15)N2xiii—U—N2xv141.63 (14)
H5vi—I1—H5vii66.8 (11)N2xiv—U—N2xv100.66 (10)
H5ii—I1—H5vii132.6 (15)N2—U—N2vii87.13 (11)
H5—I1—H5vii77.1 (12)N2x—U—N2vii65.96 (5)
I1i—I1—H5viii57.9 (4)N2xi—U—N2vii65.95 (5)
I1ii—I1—H5viii122.1 (4)N2xii—U—N2vii149.88 (14)
I1iii—I1—H5viii57.9 (4)N2xiii—U—N2vii100.66 (10)
I1iv—I1—H5viii122.1 (4)N2xiv—U—N2vii141.63 (14)
H5v—I1—H5viii66.8 (11)N2xv—U—N2vii91.77 (12)
H5vi—I1—H5viii147.9 (15)N2—U—Uxii50.33 (5)
H5ii—I1—H5viii77.1 (12)N2x—U—Uxii129.67 (5)
H5—I1—H5viii132.6 (15)N2xi—U—Uxii129.67 (5)
H5vii—I1—H5viii115.8 (8)N2xii—U—Uxii50.33 (5)
I1i—I1—H5i57.9 (4)N2xiii—U—Uxii129.67 (5)
I1ii—I1—H5i122.1 (4)N2xiv—U—Uxii50.33 (5)
I1iii—I1—H5i57.9 (4)N2xv—U—Uxii50.33 (5)
I1iv—I1—H5i122.1 (4)N2vii—U—Uxii129.67 (5)
H5v—I1—H5i77.1 (12)N2—U—Uxvi129.67 (5)
H5vi—I1—H5i132.6 (15)N2x—U—Uxvi50.33 (5)
H5ii—I1—H5i147.9 (15)N2xi—U—Uxvi50.33 (5)
H5—I1—H5i66.8 (11)N2xii—U—Uxvi129.67 (5)
H5vii—I1—H5i73.6 (4)N2xiii—U—Uxvi50.33 (5)
H5viii—I1—H5i73.6 (4)N2xiv—U—Uxvi129.67 (5)
I1i—I1—H5iii57.9 (4)N2xv—U—Uxvi129.67 (5)
I1ii—I1—H5iii122.1 (4)N2vii—U—Uxvi50.33 (5)
I1iii—I1—H5iii57.9 (4)Uxii—U—Uxvi180.0
I1iv—I1—H5iii122.1 (4)C1—N1—C8xiv122.9 (3)
H5v—I1—H5iii132.6 (15)C8—N2—C1108.2 (3)
H5vi—I1—H5iii77.1 (12)C8—N2—U117.43 (18)
H5ii—I1—H5iii66.8 (11)C1—N2—U116.22 (17)
H5—I1—H5iii147.9 (15)C8—N2—Uxii117.43 (18)
H5vii—I1—H5iii73.6 (4)C1—N2—Uxii116.22 (17)
H5viii—I1—H5iii73.6 (4)U—N2—Uxii79.34 (10)
H5i—I1—H5iii115.8 (8)N1—C1—N2128.4 (4)
I1i—I1—I1ix0.0N1—C1—C2123.3 (3)
I1ii—I1—I1ix180.0N2—C1—C2108.3 (3)
I1iii—I1—I1ix0.0C3—C2—C7120.9 (4)
I1iv—I1—I1ix180.0C3—C2—C1131.6 (4)
H5v—I1—I1ix115.3 (3)C7—C2—C1107.5 (3)
H5vi—I1—I1ix115.3 (3)H3—C3—C2121 (3)
H5ii—I1—I1ix115.3 (3)H3—C3—C4121 (3)
H5—I1—I1ix115.3 (3)C2—C3—C4117.5 (4)
H5vii—I1—I1ix57.9 (4)H4—C4—C3120 (3)
H5viii—I1—I1ix57.9 (4)H4—C4—C5118 (3)
H5i—I1—I1ix57.9 (4)C3—C4—C5121.6 (4)
H5iii—I1—I1ix57.9 (4)H5—C5—C6113 (3)
I1i—I1—C5v109.99 (3)H5—C5—C4126 (3)
I1ii—I1—C5v70.01 (3)C6—C5—C4121.0 (5)
I1iii—I1—C5v109.99 (3)H5—C5—I1ii21.9 (12)
I1iv—I1—C5v70.01 (3)C6—C5—I1ii103.3 (3)
H5v—I1—C5v5.9 (5)C4—C5—I1ii131.5 (3)
H5vi—I1—C5v134.7 (4)H5—C5—I121.9 (12)
H5ii—I1—C5v84.0 (8)C6—C5—I1103.3 (3)
H5—I1—C5v79.2 (8)C4—C5—I1131.5 (3)
H5vii—I1—C5v143.4 (7)I1ii—C5—I139.97 (6)
H5viii—I1—C5v63.9 (6)H6—C6—C5128 (3)
H5i—I1—C5v71.6 (6)H6—C6—C7115 (3)
H5iii—I1—C5v132.8 (7)C5—C6—C7117.5 (4)
I1ix—I1—C5v109.99 (3)C6—C7—C2121.4 (4)
I1i—I1—C5vi109.99 (3)C6—C7—C8133.3 (4)
I1ii—I1—C5vi70.01 (3)C2—C7—C8105.3 (3)
I1iii—I1—C5vi109.99 (3)N1xv—C8—N2126.9 (4)
I1iv—I1—C5vi70.01 (3)N1xv—C8—C7122.4 (3)
H5v—I1—C5vi134.7 (4)N2—C8—C7110.7 (3)
H5vi—I1—C5vi5.9 (5)C5—H5—I1ii152.3 (15)
H5ii—I1—C5vi79.2 (8)C5—H5—I1152.3 (15)
H5—I1—C5vi84.0 (8)I1ii—H5—I150.5 (7)
H5vii—I1—C5vi63.9 (6)C5—H5—I1iv146.0 (12)
H5viii—I1—C5vi143.4 (7)I1ii—H5—I1iv6.83 (7)
H5i—I1—C5vi132.8 (7)I1—H5—I1iv57.4 (7)
H5iii—I1—C5vi71.6 (6)C5—H5—I1i146.0 (12)
I1ix—I1—C5vi109.99 (3)I1ii—H5—I1i57.4 (7)
C5v—I1—C5vi140.02 (6)I1—H5—I1i6.83 (7)
I1i—I1—C5ii109.99 (3)I1iv—H5—I1i64.2 (8)
I1ii—I1—C5ii70.01 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z; (iii) x, y, z+1/2; (iv) x, y, z1/2; (v) y, x, z; (vi) y, x, z; (vii) y, x, z+1/2; (viii) y, x, z+1/2; (ix) x, y, z+1; (x) x+1, y, z+1/2; (xi) x, y+1, z+1/2; (xii) x+1, y+1, z; (xiii) y+1, x+1, z+1/2; (xiv) y+1, x, z; (xv) y, x+1, z; (xvi) x+1, y+1, z+1.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds