organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydrogen-bonding patterns in trimethoprim tetra­fluoroborate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India, and bFaculty of Health and Life Sciences, Coventry University, Coventry CV1 5FB, England
*Correspondence e-mail: tommtrichy@yahoo.co.in

(Received 3 October 2005; accepted 8 November 2005; online 16 November 2005)

In the title compound [systematic name: 2,4-diamino-5-(3,4,5-trimethoxy­benz­yl)pyrimidinium tetrafluoroborate], C14H19N4O3+·BF4, the trimethoprim (TMP) mol­ecule is protonated at one of the pyrimidine N atoms. The protonated N atom and 2-amine group of the TMP cation inter­act with the tetrafluoroborate anion through a pair of N—H⋯F hydrogen bonds [graph set R22(8)]. The inversion-related TMP cations are linked through a pair of N—H⋯N hydrogen bonds. The 2-amine group of one TMP cation and the 4-amine group of another cation are bridged by a meth­oxy O atom, via N—H⋯O hydrogen bonds.

Comment

Trimethoprim [2,4-diamino-5-(3′,4′,5′-trimethoxy­benz­yl)­pyrimidine or TMP] is a well known anti­folate drug. It is a potent inhibitor of bacterial dihydro­folate reductase (DHFR) but is less effective against human DHFR. The drug (TMP) in its N1-protonated form inhibits DHFR. The crystal structure of trimethoprim (Koetzle & Williams, 1976[Koetzle, T. F. & Williams, G. J. B. (1976). J. Am. Chem. Soc. 98, 2074-2078.]) and its complexes, for example, trimethoprim monobenzoate benzoic acid (Bettinetti et al., 1985[Bettinetti, G. P., Giordano, F., La Manna, A., Giuseppetti, G. & Tadini, C. (1985). Acta Cryst. C41, 1249-1253.]) and trimethoprim acetate (Bryan et al., 1987[Bryan, R. F., Haltiwanger, R. C. & Woods, M. K. (1987). Acta Cryst. C43, 2412-2415.]), have been reported in the literature. The present study has been undertaken to explore the hydrogen-bonding patterns involving the TMP cation in a variety of environments. The crystal structures of TMP sulfate trihydrate (Muthiah et al., 2001[Muthiah, P. T., Umadevi, B., Stanley, N., Shui, X. & Eggleston, D. S. (2001). Acta Cryst. E57, o1179-o1182.]), TMP nitrate (Murugesan & Muthiah, 1997[Murugesan, S. & Muthiah, P. T. (1997). Acta Cryst. C53, 763-764.]) and TMP carboxyl­ates (Stanley et al., 2005[Stanley, N., Muthiah, P. T., Geib, S. J., Luger, P., Weber, M. & Messerschmidt, M. (2005). Tetrahedron, 61, 7201-7210.]) have also been reported from our laboratory.

[Scheme 1]

The asymmetric unit of (I)[link] contains a protonated tri­metho­prim (TMP) cation and a tetrafluoroborate anion (FLUB) (Fig. 1[link]). The trimethoprim mol­ecule is protonated at atom N1 of the pyrimidine moiety, which is evident from the increase in the inter­nal angle at protonated N1 [C2—N1—C6 = 120.15 (13)°] compared with that at unprotonated atom N3 [C2—N3—C4 = 118.36 (14)°]. The dihedral angle between the pyrimidine and benzene planes is 84.27 (7)°; the corresponding angle in trimethoprim perchlorate is 83.7 (2)° (Muthiah et al., 2002[Muthiah, P. T., Umadevi, B., Stanley, N., Bocelli, G. & Cantoni, A. (2002). Acta Cryst. E58, o59-o61.]). The conformation of the trimethoprim cation is described by the two torsion angles C4—C5—C7—C8 and C5—C7—C8—C9, which are 77.84 (19) and −158.03 (14)°, respectively. The distorted tetra­hedral BF4 ion has typical B—F distances.

Atoms F2 and F1 act as acceptors in N—H⋯F inter­actions (Table 2[link]) with the protonated pyrimidine N1 and 2-amine group of the TMP cation, leading to the formation of a fork-like hydrogen-bonding pattern with graph-set notation R22(8) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The R22(8) motif is frequently observed in amino­pyrimidine carboxyl­ate salts (Lynch & Jones, 2004[Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748-754.]). Here the tetrafluoroborate anion mimics the role of the carboxyl­ate group. The TMP cations are paired centrosymmetrically through N4—H4A⋯N3iii and N3⋯H4Aiii—N4iii hydrogen bonds (symmetry codes are given in Table 2[link]). The 2-amine group of one TMP cation and the 4-amine group of another cation (both of these cations being members of a base pair) are bridged by meth­oxy atom O1, using a pair of N—H⋯O hydrogen bonds, leading to a complementary DADA (D = donor in hydrogen bonds, A = acceptor in hydrogen bonds) array of quadruple hydrogen bonds (Fig. 2[link]). This pattern is similar to that reported in TMP nitrate (Murugesan & Muthiah, 1997[Murugesan, S. & Muthiah, P. T. (1997). Acta Cryst. C53, 763-764.]), TMP trifluoro­acetate (Francis et al., 2002[Francis, S., Muthiah, P. T., Bocelli, G. & Righi, L. (2002). Acta Cryst. E58, o717-o719.]), and TMP salicylate methanol solvate (Panneerselvam et al., 2002[Panneerselvam, P., Stanley, N. & Muthiah, P. T. (2002). Acta Cryst. E58, o180-o182.]). The hydrogen-bonding parameters are listed in Table 2[link].

[Figure 1]
Figure 1
A view of (I)[link], with the atom-labelling scheme and 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
The hydrogen-bonding (dashed lines) patterns of (I)[link]. [Symmetry codes: (i) x, 1 + y, z − 1; (iii) 1 − x, 1 − y, −z.]

Experimental

Hot aqueous solutions of trimethoprim (145 mg; obtained as a gift sample from Shilpa Anti­biotics Ltd) and tetrafluoro­boric acid (220 mg of 40% solution; Aldrich) were mixed in a 1:2 molar ratio. The resulting solution was warmed over a water bath for a few minutes and then kept at room temperature for crystallization. After a few days, block-shaped colourless crystals of (I)[link] were obtained.

Crystal data
  • C14H19N4O3+·BF4

  • Mr = 378.14

  • Triclinic, [P \overline 1]

  • a = 9.4105 (3) Å

  • b = 9.5397 (2) Å

  • c = 10.1276 (4) Å

  • α = 88.564 (2)°

  • β = 73.253 (2)°

  • γ = 72.304 (2)°

  • V = 827.48 (5) Å3

  • Z = 2

  • Dx = 1.518 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3811 reflections

  • θ = 3.0–27.6°

  • μ = 0.14 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.18 × 0.16 × 0.09 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: none

  • 18185 measured reflections

  • 3811 independent reflections

  • 3193 reflections with I > 2σ(I)

  • Rint = 0.041

  • θmax = 27.6°

  • h = −12 → 12

  • k = −12 → 12

  • l = −13 → 13

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.132

  • S = 1.15

  • 3811 reflections

  • 255 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0644P)2 + 0.2497P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.52 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.133 (9)

Table 1
Selected geometric parameters (Å, °)[link]

O1—C10 1.377 (2)
O1—C14 1.443 (2)
O2—C11 1.3802 (19)
O2—C15 1.435 (2)
O3—C16 1.435 (2)
O3—C12 1.368 (2)
N1—C2 1.356 (2)
N1—C6 1.364 (2)
N2—C2 1.330 (2)
N3—C2 1.331 (2)
N3—C4 1.347 (2)
N4—C4 1.322 (2)
C10—O1—C14 116.47 (12)
C11—O2—C15 114.69 (13)
C12—O3—C16 116.53 (12)
C2—N1—C6 120.15 (13)
C2—N3—C4 118.36 (14)
N2—C2—N3 119.35 (15)
N1—C2—N2 118.59 (14)
N1—C2—N3 122.06 (15)
N3—C4—C5 122.06 (14)
N4—C4—C5 120.69 (15)
N3—C4—N4 117.24 (15)
N1—C6—C5 121.27 (15)
O1—C10—C9 123.88 (15)
O1—C10—C11 115.49 (14)
O2—C11—C12 121.87 (15)
O2—C11—C10 118.96 (15)
O3—C12—C11 115.08 (14)
O3—C12—C13 124.55 (15)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯F2i 0.88 1.97 2.8445 (17) 177
N2—H2A⋯O1ii 0.88 2.10 2.9345 (18) 158
N2—H2B⋯F1i 0.88 2.01 2.8851 (17) 174
N4—H4A⋯N3iii 0.88 2.29 3.121 (2) 158
N4—H4B⋯O1iv 0.88 2.36 2.9210 (18) 122
C6—H6⋯O2v 0.95 2.50 3.171 (2) 128
C9—H9⋯F3Aiv 0.95 2.38 2.995 (9) 122
C14—H14B⋯F4Avi 0.98 2.50 3.414 (10) 155
C15—H15C⋯O3 0.98 2.46 3.022 (2) 116
Symmetry codes: (i) x, y+1, z-1; (ii) x+1, y, z-1; (iii) -x+1, -y+1, -z; (iv) -x, -y+1, -z+1; (v) -x, -y+2, -z+1; (vi) x-1, y, z.

All H atoms were placed in idealized locations and were refined using a riding model, with C—H = 0.95–0.99 Å, N—H = 0.88 Å and Uiso(H) = 1.2Ueq(C,N). Two of the F atoms in the BF4 group are disordered over two positions, and the occupancy factors for the disordered positions F3A/F3B and F4A/F4B were refined to 0.60 (2)/0.40 (2). Similarity restraints were applied to distances involving disordered atoms.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology. Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

2,4-diamino-5-(3,4,5-trimethoxybenzyl)pyrimidinium fluoroborate top
Crystal data top
C14H19N4O3+·BF4Z = 2
Mr = 378.14F(000) = 392
Triclinic, P1Dx = 1.518 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4105 (3) ÅCell parameters from 3811 reflections
b = 9.5397 (2) Åθ = 3.0–27.6°
c = 10.1276 (4) ŵ = 0.14 mm1
α = 88.564 (2)°T = 120 K
β = 73.253 (2)°Block, colourless
γ = 72.304 (2)°0.18 × 0.16 × 0.09 mm
V = 827.48 (5) Å3
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
3193 reflections with I > 2σ(I)
Radiation source: Bruker–Nonius FR591 rotating anodeRint = 0.041
Graphite monochromatorθmax = 27.6°, θmin = 3.0°
φ and ω scansh = 1212
18185 measured reflectionsk = 1212
3811 independent reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0644P)2 + 0.2497P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.001
3811 reflectionsΔρmax = 0.61 e Å3
255 parametersΔρmin = 0.52 e Å3
6 restraintsExtinction correction: SHELXL97, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.133 (9)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.22859 (13)0.61645 (12)0.66705 (11)0.0221 (3)
O20.06715 (14)0.72735 (13)0.78897 (11)0.0248 (3)
O30.15105 (13)0.84755 (12)0.64102 (11)0.0235 (3)
N10.28278 (15)0.96385 (14)0.00878 (13)0.0199 (4)
N20.53520 (16)0.86442 (15)0.15031 (14)0.0246 (4)
N30.40722 (15)0.70767 (14)0.03325 (13)0.0195 (4)
N40.28298 (16)0.55383 (14)0.09004 (15)0.0238 (4)
C20.40794 (18)0.84404 (17)0.06383 (15)0.0190 (4)
C40.27950 (18)0.68998 (17)0.05895 (15)0.0186 (4)
C50.14285 (18)0.81297 (17)0.12055 (15)0.0182 (4)
C60.15165 (18)0.94728 (17)0.08297 (16)0.0192 (4)
C70.00296 (17)0.79327 (17)0.21807 (16)0.0199 (4)
C80.00211 (17)0.76276 (16)0.36594 (15)0.0185 (4)
C90.10785 (17)0.69467 (16)0.44282 (16)0.0190 (4)
C100.12541 (17)0.68018 (16)0.58268 (16)0.0188 (4)
C110.03807 (18)0.73361 (16)0.64772 (16)0.0196 (4)
C120.07051 (18)0.79892 (16)0.56898 (16)0.0196 (4)
C130.08929 (18)0.81245 (17)0.42804 (16)0.0194 (4)
C140.3298 (2)0.57224 (19)0.60493 (18)0.0266 (5)
C150.0542 (2)0.62255 (19)0.83157 (18)0.0298 (5)
C160.28441 (19)0.8868 (2)0.56058 (18)0.0266 (5)
F10.56011 (11)0.15397 (11)0.78546 (10)0.0272 (3)
F20.30228 (12)0.24550 (11)0.90592 (11)0.0322 (3)
F3A0.3745 (7)0.1814 (13)0.6750 (7)0.083 (2)0.60 (2)
F4A0.4213 (9)0.3796 (4)0.7583 (15)0.083 (2)0.60 (2)
B10.4133 (2)0.23827 (19)0.7771 (2)0.0276 (6)
F3B0.3813 (8)0.1471 (6)0.6919 (6)0.0282 (16)0.40 (2)
F4B0.4046 (11)0.3723 (5)0.7221 (6)0.0322 (16)0.40 (2)
H10.286201.052500.032100.0240*
H2A0.617900.788200.186700.0300*
H2B0.536700.954200.171100.0300*
H4A0.366500.479400.050900.0290*
H4B0.201800.537600.149800.0290*
H60.064901.032100.121100.0230*
H7A0.025000.710900.179000.0240*
H7B0.090600.883600.220800.0240*
H90.167800.658200.399500.0230*
H130.164100.855500.374600.0230*
H14A0.390000.657700.567200.0320*
H14B0.401400.533300.675100.0320*
H14C0.266800.495700.530400.0320*
H15A0.076900.525100.786900.0360*
H15B0.020100.618000.932200.0360*
H15C0.148600.653100.804800.0360*
H16A0.354300.804600.493900.0320*
H16B0.340000.908400.621900.0320*
H16C0.250000.974200.511000.0320*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0211 (6)0.0236 (6)0.0208 (6)0.0100 (5)0.0018 (5)0.0043 (4)
O20.0277 (6)0.0273 (6)0.0159 (6)0.0064 (5)0.0036 (5)0.0030 (4)
O30.0241 (6)0.0297 (6)0.0193 (6)0.0123 (5)0.0059 (5)0.0008 (4)
N10.0206 (7)0.0182 (6)0.0204 (7)0.0069 (5)0.0045 (5)0.0037 (5)
N20.0212 (7)0.0191 (7)0.0281 (7)0.0068 (5)0.0014 (6)0.0036 (5)
N30.0195 (7)0.0190 (6)0.0183 (6)0.0064 (5)0.0026 (5)0.0019 (5)
N40.0194 (7)0.0195 (7)0.0271 (7)0.0058 (5)0.0008 (6)0.0036 (5)
C20.0205 (8)0.0214 (8)0.0162 (7)0.0079 (6)0.0054 (6)0.0016 (6)
C40.0189 (7)0.0219 (8)0.0163 (7)0.0081 (6)0.0054 (6)0.0024 (6)
C50.0178 (7)0.0233 (8)0.0142 (7)0.0071 (6)0.0048 (6)0.0016 (6)
C60.0173 (7)0.0224 (8)0.0168 (7)0.0051 (6)0.0043 (6)0.0008 (6)
C70.0162 (7)0.0239 (8)0.0185 (7)0.0066 (6)0.0032 (6)0.0010 (6)
C80.0158 (7)0.0184 (7)0.0174 (7)0.0027 (6)0.0017 (6)0.0007 (5)
C90.0161 (7)0.0175 (7)0.0218 (8)0.0046 (6)0.0039 (6)0.0005 (6)
C100.0166 (7)0.0152 (7)0.0202 (8)0.0035 (6)0.0003 (6)0.0023 (6)
C110.0196 (7)0.0187 (7)0.0162 (7)0.0032 (6)0.0016 (6)0.0011 (5)
C120.0170 (7)0.0188 (7)0.0208 (8)0.0038 (6)0.0042 (6)0.0000 (6)
C130.0162 (7)0.0210 (7)0.0189 (7)0.0058 (6)0.0018 (6)0.0012 (6)
C140.0245 (8)0.0283 (9)0.0282 (9)0.0136 (7)0.0040 (7)0.0029 (7)
C150.0392 (10)0.0273 (9)0.0239 (9)0.0084 (7)0.0132 (8)0.0054 (7)
C160.0216 (8)0.0341 (9)0.0254 (8)0.0124 (7)0.0045 (7)0.0010 (7)
F10.0221 (5)0.0325 (5)0.0288 (5)0.0086 (4)0.0101 (4)0.0049 (4)
F20.0281 (6)0.0300 (5)0.0319 (6)0.0094 (4)0.0015 (4)0.0051 (4)
F3A0.0294 (18)0.177 (6)0.0344 (18)0.012 (3)0.0181 (14)0.006 (3)
F4A0.036 (2)0.041 (2)0.137 (6)0.0033 (16)0.015 (4)0.052 (3)
B10.0211 (9)0.0302 (10)0.0292 (10)0.0077 (8)0.0052 (8)0.0113 (8)
F3B0.027 (2)0.028 (3)0.037 (3)0.0106 (13)0.0177 (18)0.0065 (15)
F4B0.038 (3)0.025 (2)0.027 (3)0.0061 (16)0.0042 (15)0.0111 (15)
Geometric parameters (Å, º) top
F1—B11.397 (2)C5—C71.503 (2)
F2—B11.405 (2)C5—C61.347 (2)
F3A—B11.365 (8)C7—C81.520 (2)
F3B—B11.392 (7)C8—C91.393 (2)
F4A—B11.379 (5)C8—C131.391 (2)
F4B—B11.371 (5)C9—C101.386 (2)
O1—C101.377 (2)C10—C111.397 (2)
O1—C141.443 (2)C11—C121.400 (2)
O2—C111.3802 (19)C12—C131.394 (2)
O2—C151.435 (2)C6—H60.95
O3—C161.435 (2)C7—H7A0.99
O3—C121.368 (2)C7—H7B0.99
N1—C21.356 (2)C9—H90.95
N1—C61.364 (2)C13—H130.95
N2—C21.330 (2)C14—H14B0.98
N3—C21.331 (2)C14—H14A0.98
N3—C41.347 (2)C14—H14C0.98
N4—C41.322 (2)C15—H15B0.98
N1—H10.88C15—H15A0.98
N2—H2B0.88C15—H15C0.98
N2—H2A0.88C16—H16C0.98
N4—H4A0.88C16—H16A0.98
N4—H4B0.88C16—H16B0.98
C4—C51.441 (2)
F1···C16i3.368 (2)C9···H15Aiii3.0620
F1···C2i2.9212 (18)C9···H14C2.7394
F1···N1i3.0584 (17)C9···H16Cvii3.0218
F1···N3i2.9986 (17)C10···H2Avi2.7763
F1···N2ii2.8851 (17)C11···H2Avi3.0749
F1···C4i3.136 (2)C12···H14Ciii2.8703
F1···C5i3.302 (2)C12···H15C2.8987
F1···C6i3.239 (2)C13···H16C2.7550
F2···N1ii2.8445 (17)C13···H16A2.7409
F3A···C16i3.288 (8)C13···H14Ciii2.9945
F3A···C9iii2.995 (9)C14···H2Avi2.8183
F3A···C7iii3.282 (8)C14···H4Biii3.0896
F3B···C16iv3.318 (7)C14···H92.4843
F3B···C7iii3.279 (8)C16···H7Bvii2.9178
F3B···C16i3.365 (7)C16···H132.5261
F3B···C9iii3.213 (7)B1···H16Ai2.9217
F4B···C153.323 (8)B1···H1ii2.8443
F1···H16Ai2.7629B1···H2Bii2.7082
F1···H2Bii2.0078H1···H2B2.2865
F1···H13i2.6100H1···F2viii1.9656
F2···H1ii1.9656H1···B1viii2.8443
F3A···H9iii2.3818H2A···O2ix2.7789
F3A···H14Aiii2.8522H2A···O1ix2.1012
F3A···H7Biii2.8258H2A···C10ix2.7763
F3A···H16Ai2.6715H2A···C11ix3.0749
F3A···H16Biv2.8039H2A···C14ix2.8183
F3B···H16Biv2.5723H2B···F1viii2.0078
F3B···H2Bii2.6183H2B···B1viii2.7082
F3B···H7Biii2.7261H2B···H12.2865
F3B···H9iii2.6571H2B···F3Bviii2.6183
F3B···H16Ai2.8106H4A···N3x2.2886
F4A···H14Bv2.5018H4A···H4Ax2.5725
F4B···H16Ai2.7889H4B···C72.5689
F4B···H15A2.8661H4B···C14iii3.0896
F4B···H14Bv2.6619H4B···O1iii2.3604
O1···N2vi2.9345 (18)H4B···C82.8977
O1···O22.6600 (18)H4B···H7A2.2117
O1···N4iii2.9210 (18)H6···O2vii2.4983
O2···O32.7108 (18)H6···H7B2.3462
O2···C6vii3.171 (2)H6···O3vii2.6741
O2···O12.6600 (18)H7A···H4B2.2117
O3···C153.022 (2)H7A···N42.7165
O3···O22.7108 (18)H7A···H15Aiii2.4411
O1···H4Biii2.3604H7A···H92.3813
O1···H2Avi2.1012H7A···H15Bxiii2.5464
O2···H6vii2.4983H7B···H62.3462
O2···H2Avi2.7789H7B···O3vii2.7738
O3···H15C2.4582H7B···C16vii2.9178
O3···H7Bvii2.7738H7B···F3Aiii2.8258
O3···H6vii2.6741H7B···F3Biii2.7261
N1···F2viii2.8445 (17)H9···H14A2.2838
N1···F1i3.0584 (17)H9···H14C2.2565
N2···F1viii2.8851 (17)H9···C142.4843
N2···O1ix2.9345 (18)H9···H7A2.3813
N3···F1i2.9986 (17)H9···F3Biii2.6571
N3···N4x3.121 (2)H9···F3Aiii2.3818
N4···O1iii2.9210 (18)H9···H15Aiii2.3830
N4···C14iii3.385 (2)H13···H16A2.3638
N4···N3x3.121 (2)H13···C52.6875
N4···C83.418 (2)H13···C63.0840
N3···H4Ax2.2886H13···C162.5261
N4···H14Biii2.9079H13···H16C2.2633
N4···H7A2.7165H13···F1i2.6100
C2···F1i2.9212 (18)H14A···C92.7167
C4···F1i3.136 (2)H14A···F3Aiii2.8522
C5···F1i3.302 (2)H14A···H92.2838
C6···C6xi3.594 (2)H14B···F4Bxiv2.6619
C6···O2vii3.171 (2)H14B···F4Axiv2.5018
C6···F1i3.239 (2)H14B···N4iii2.9079
C7···F3Aiii3.282 (8)H14C···H92.2565
C7···F3Biii3.279 (8)H14C···C92.7394
C8···C16vii3.518 (2)H14C···C12iii2.8703
C8···N43.418 (2)H14C···C13iii2.9945
C9···F3Aiii2.995 (9)H15A···F4B2.8661
C9···F3Biii3.213 (7)H15A···C9iii3.0620
C9···C10iii3.552 (2)H15A···H7Aiii2.4411
C10···C9iii3.552 (2)H15A···H9iii2.3830
C12···C13vii3.549 (2)H15B···H7Axv2.5464
C13···C12vii3.549 (2)H15C···O32.4582
C13···C13vii3.598 (2)H15C···C122.8987
C14···N4iii3.385 (2)H16A···F3Bi2.8106
C15···O33.022 (2)H16A···C132.7409
C15···F4B3.323 (8)H16A···H132.3638
C16···F3Bxii3.318 (7)H16A···F1i2.7629
C16···F1i3.368 (2)H16A···F3Ai2.6715
C16···C8vii3.518 (2)H16A···B1i2.9217
C16···F3Bi3.365 (7)H16A···F4Bi2.7889
C16···F3Ai3.288 (8)H16B···F3Axii2.8039
C5···H132.6875H16B···F3Bxii2.5723
C6···H133.0840H16C···C132.7550
C7···H4B2.5689H16C···H132.2633
C8···H4B2.8977H16C···C8vii2.8661
C8···H16Cvii2.8661H16C···C9vii3.0218
C9···H14A2.7167
C10—O1—C14116.47 (12)C5—C6—H6119.38
C11—O2—C15114.69 (13)C5—C7—H7A108.05
C12—O3—C16116.53 (12)C5—C7—H7B108.02
C2—N1—C6120.15 (13)C8—C7—H7A108.05
C2—N3—C4118.36 (14)C8—C7—H7B107.99
C2—N1—H1119.95H7A—C7—H7B107.29
C6—N1—H1119.90C8—C9—H9120.04
C2—N2—H2A120.02C10—C9—H9120.05
H2A—N2—H2B120.02C8—C13—H13120.08
C2—N2—H2B119.96C12—C13—H13120.19
H4A—N4—H4B120.02O1—C14—H14A109.47
C4—N4—H4A119.95O1—C14—H14B109.44
C4—N4—H4B120.03O1—C14—H14C109.52
N2—C2—N3119.35 (15)H14A—C14—H14B109.44
N1—C2—N2118.59 (14)H14A—C14—H14C109.50
N1—C2—N3122.06 (15)H14B—C14—H14C109.47
N3—C4—C5122.06 (14)O2—C15—H15A109.52
N4—C4—C5120.69 (15)O2—C15—H15B109.46
N3—C4—N4117.24 (15)O2—C15—H15C109.45
C4—C5—C6116.06 (15)H15A—C15—H15B109.47
C6—C5—C7121.62 (15)H15A—C15—H15C109.46
C4—C5—C7122.30 (14)H15B—C15—H15C109.47
N1—C6—C5121.27 (15)O3—C16—H16A109.46
C5—C7—C8117.06 (14)O3—C16—H16B109.48
C7—C8—C9117.45 (15)O3—C16—H16C109.46
C7—C8—C13122.04 (14)H16A—C16—H16B109.47
C9—C8—C13120.24 (14)H16A—C16—H16C109.47
C8—C9—C10119.91 (15)H16B—C16—H16C109.48
O1—C10—C9123.88 (15)F1—B1—F2108.92 (14)
O1—C10—C11115.49 (14)F1—B1—F3A111.4 (4)
C9—C10—C11120.61 (15)F1—B1—F4A105.5 (4)
O2—C11—C12121.87 (15)F1—B1—F3B102.4 (3)
C10—C11—C12119.09 (14)F1—B1—F4B116.1 (5)
O2—C11—C10118.96 (15)F2—B1—F3A111.0 (3)
O3—C12—C11115.08 (14)F2—B1—F4A105.9 (6)
C11—C12—C13120.37 (16)F2—B1—F3B104.3 (3)
O3—C12—C13124.55 (15)F2—B1—F4B114.0 (3)
C8—C13—C12119.73 (15)F3A—B1—F4A113.8 (7)
N1—C6—H6119.35F3B—B1—F4B109.9 (4)
C14—O1—C10—C94.2 (2)C6—C5—C7—C8103.87 (18)
C14—O1—C10—C11174.71 (14)C5—C7—C8—C1327.9 (2)
C15—O2—C11—C10109.92 (17)C5—C7—C8—C9158.03 (14)
C15—O2—C11—C1273.51 (19)C13—C8—C9—C101.9 (2)
C16—O3—C12—C11167.55 (14)C7—C8—C13—C12171.44 (14)
C16—O3—C12—C1313.3 (2)C7—C8—C9—C10172.26 (14)
C6—N1—C2—N31.2 (2)C9—C8—C13—C122.4 (2)
C6—N1—C2—N2178.38 (15)C8—C9—C10—C110.1 (2)
C2—N1—C6—C50.2 (2)C8—C9—C10—O1179.02 (14)
C4—N3—C2—N12.3 (2)C9—C10—C11—O2175.11 (14)
C4—N3—C2—N2177.29 (15)O1—C10—C11—C12179.46 (13)
C2—N3—C4—N4178.46 (15)O1—C10—C11—O23.9 (2)
C2—N3—C4—C52.5 (2)C9—C10—C11—C121.6 (2)
N4—C4—C5—C6179.43 (16)O2—C11—C12—O33.7 (2)
N3—C4—C5—C7176.87 (15)O2—C11—C12—C13175.57 (14)
N3—C4—C5—C61.5 (2)C10—C11—C12—O3179.77 (14)
N4—C4—C5—C72.2 (2)C10—C11—C12—C131.0 (2)
C7—C5—C6—N1178.02 (15)O3—C12—C13—C8178.17 (14)
C4—C5—C6—N10.4 (2)C11—C12—C13—C81.0 (2)
C4—C5—C7—C877.84 (19)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z+1; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x+1, y, z; (vi) x1, y, z+1; (vii) x, y+2, z+1; (viii) x, y+1, z1; (ix) x+1, y, z1; (x) x+1, y+1, z; (xi) x, y+2, z; (xii) x, y+1, z; (xiii) x, y, z1; (xiv) x1, y, z; (xv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···F2viii0.881.972.8445 (17)177
N2—H2A···O1ix0.882.102.9345 (18)158
N2—H2B···F1viii0.882.012.8851 (17)174
N4—H4A···N3x0.882.293.121 (2)158
N4—H4B···O1iii0.882.362.9210 (18)122
C6—H6···O2vii0.952.503.171 (2)128
C9—H9···F3Aiii0.952.382.995 (9)122
C14—H14B···F4Axiv0.982.503.414 (10)155
C15—H15C···O30.982.463.022 (2)116
Symmetry codes: (iii) x, y+1, z+1; (vii) x, y+2, z+1; (viii) x, y+1, z1; (ix) x+1, y, z1; (x) x+1, y+1, z; (xiv) x1, y, z.
 

Acknowledgements

MH thanks the Council of Scientific and Industrial Research (CSIR), India, for the award of a Senior Research Fellowship (SRF) [reference No. 9/475(123)/2004-EMR-I]. DL thanks the EPSRC National Crystallography Service (Southampton, England) for X-ray data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBettinetti, G. P., Giordano, F., La Manna, A., Giuseppetti, G. & Tadini, C. (1985). Acta Cryst. C41, 1249–1253.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBryan, R. F., Haltiwanger, R. C. & Woods, M. K. (1987). Acta Cryst. C43, 2412–2415.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFrancis, S., Muthiah, P. T., Bocelli, G. & Righi, L. (2002). Acta Cryst. E58, o717–o719.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKoetzle, T. F. & Williams, G. J. B. (1976). J. Am. Chem. Soc. 98, 2074–2078.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationLynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMurugesan, S. & Muthiah, P. T. (1997). Acta Cryst. C53, 763–764.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMuthiah, P. T., Umadevi, B., Stanley, N., Bocelli, G. & Cantoni, A. (2002). Acta Cryst. E58, o59–o61.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuthiah, P. T., Umadevi, B., Stanley, N., Shui, X. & Eggleston, D. S. (2001). Acta Cryst. E57, o1179–o1182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology. Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPanneerselvam, P., Stanley, N. & Muthiah, P. T. (2002). Acta Cryst. E58, o180–o182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStanley, N., Muthiah, P. T., Geib, S. J., Luger, P., Weber, M. & Messerschmidt, M. (2005). Tetrahedron, 61, 7201–7210.  Web of Science CSD CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds