Download citation
Download citation
link to html
Pink crystals of the title dinuclear complex, [Ag2(C10H8N2)2(C28H28P2)](BF4)2, were obtained from a methanol solution of equivalent amounts of AgBF4, 2,2′-bipyridyl (bipy) and 1,4-bis­(di­phenyl­phosphino)­butane (dppb). The [Ag2(bipy)2(dppb)]2+ cation lies across a crystallographic inversion centre and the coordination environment around AgI is distorted trigonal.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803013813/ci6238sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803013813/ci6238Isup2.hkl
Contains datablock I

CCDC reference: 217426

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.047
  • wR factor = 0.131
  • Data-to-parameter ratio = 17.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Diphosphine ligands Ph2P(CH2)nPPh2 have been widely applied to the coordination chemistry because of their versatile coordination modes, such as chelation (McLauchlan et al., 2000), µ2-bridging (Yam et al., 2002) or a combination of both coordination modes (Zhuravel & Glueck, 1999). Among Ph2P(CH2)nPPh2 ligands, bis(diphenylphosphino)methane (n = 1) is widely used owing to its rigid backbone with the shortest spacer. Recently, diphosphine ligands are further applied to synthesize macrocycle and two-dimensional network structures, with the participation of another bridging ligand (Puddephatt, 2001). In the past, we have obtained a series of AgI complexes containing both diphosphine and thiolate ligands (Deng et al., 2000; Kang et al., 2002; Zhang et al., 2003), from which we found that the backbone length of diphosphine ligands is critical to form the complexes. We also discovered that higher the value of `n' of the backbone (CH2)n, it is more difficult to obtain single crystals of the complex. Here, we report the crystal and molecular structure of [Ag2(bipy)2(dppb)](BF4)2, (I), which was prepared with the flexible dppb ligand. This work complements and extends our structural characterization of compounds of highly flexible diphosphine ligands.

The asymmetric unit of (I) consists of one-half of the [Ag2(bipy)2(dppb)]2+ cation and a BF4 anion. The other half of the cation is generated by a crystallographic inversion centre (Fig. 1). The mid-point of the C2—C2i bond [symmetry code: (i) 2 − x, 2 − y, −z] is found to coincide with the crystallographic inversion centre. The AgI atom has a distorted trigonal coordination environment which is made up of two N atoms from the bipy ligand and the P atom from the dppb ligand. The bipy ligand chelates the AgI atom to form a five-membered ring with an angle N1—Ag1—N2 of 72.08 (10)°. The dppb ligand acts as a µ2-bridge linking two AgI atoms. The BF4 anion is linked to the cation only through C—H···F hydrogen bonds (Table 2). The other short contacts observed in the structure are Ag1···N2(1 − x, 2 − y, −z) of 3.320 (5) Å and Ag1···Ag1(1 − x, 2 − y, −z) of 3.5227 (8) Å.

Experimental top

The synthesis of (I) was carried out by the reaction of AgBF4 (0.019 g, 0.1 mmol), 2,2'-dipyridyl (0.016 g, 0.1 mmol) and 1,4-bis(diphosphino)butane (0.043 g, 0.1 mmol) in MeOH solution (10 ml) at room temperature for 0.5 h. The solution was then filtered. Pink crystals of (I) were obtained by evaporation of a pale-red solution.

Refinement top

The H atoms were geometrically positioned and were treated as riding atoms on the parent C atoms, with C—H distances in the range 0.93–0.97 Å.

Computing details top

Data collection: SMART (Bruker,1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of (I) showing 50% probability displacement ellipsoids and atom-numbering scheme for the contents of the asymmetric unit.
[Bis[(2,2'-bipyridyl)silver(I)]-µ2-[1,4-bis(diphenylphosphino)butane]] ditetrafluoroborate top
Crystal data top
[Ag2(C10H8N2)2(C28H28P2)](BF4)2F(000) = 1132
Mr = 1128.17Dx = 1.601 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7492 reflections
a = 10.7951 (19) Åθ = 1.9–27.1°
b = 14.402 (3) ŵ = 0.98 mm1
c = 15.118 (3) ÅT = 293 K
β = 95.274 (3)°Block, pink
V = 2340.5 (8) Å30.50 × 0.46 × 0.44 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
4318 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 27.1°, θmin = 1.9°
ω scansh = 1213
12917 measured reflectionsk = 1813
5086 independent reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0851P)2 + 0.6154P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5086 reflectionsΔρmax = 0.53 e Å3
299 parametersΔρmin = 1.40 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 1.45 (3)
Crystal data top
[Ag2(C10H8N2)2(C28H28P2)](BF4)2V = 2340.5 (8) Å3
Mr = 1128.17Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.7951 (19) ŵ = 0.98 mm1
b = 14.402 (3) ÅT = 293 K
c = 15.118 (3) Å0.50 × 0.46 × 0.44 mm
β = 95.274 (3)°
Data collection top
Bruker SMART CCD
diffractometer
4318 reflections with I > 2σ(I)
12917 measured reflectionsRint = 0.024
5086 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.07Δρmax = 0.53 e Å3
5086 reflectionsΔρmin = 1.40 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.61079 (2)0.990655 (19)0.09265 (2)0.0608 (2)
P10.76784 (6)0.87675 (5)0.09391 (5)0.0434 (2)
F10.8945 (7)1.3463 (4)0.1529 (7)0.271 (5)
F20.7137 (6)1.2913 (4)0.1594 (4)0.209 (3)
F30.8502 (4)1.2448 (3)0.0559 (3)0.1494 (16)
F40.7670 (3)1.3884 (2)0.0523 (3)0.1137 (10)
N10.5736 (3)1.14397 (19)0.1157 (2)0.0590 (7)
N20.4056 (3)1.00546 (18)0.1277 (3)0.0599 (7)
C10.8909 (3)0.8965 (2)0.01984 (19)0.0497 (7)
H1A0.95650.85120.03300.060*
H1B0.85690.88710.04110.060*
C20.9463 (3)0.9933 (2)0.0289 (2)0.0497 (7)
H2A0.97601.00410.09060.060*
H2B0.88201.03860.01220.060*
C30.3808 (3)1.0881 (2)0.16359 (19)0.0509 (7)
C40.2797 (3)1.0997 (3)0.2125 (2)0.0707 (10)
H40.26331.15740.23650.085*
C50.2030 (4)1.0244 (4)0.2255 (3)0.0807 (13)
H50.13551.03110.25910.097*
C60.2274 (4)0.9396 (4)0.1882 (3)0.0750 (11)
H60.17720.88820.19560.090*
C70.3297 (3)0.9341 (3)0.1394 (3)0.0703 (10)
H70.34650.87750.11340.084*
C80.4661 (3)1.1661 (2)0.1480 (2)0.0538 (7)
C90.4357 (4)1.2575 (3)0.1655 (2)0.0711 (10)
H90.35941.27240.18580.085*
C100.5224 (5)1.3265 (3)0.1518 (3)0.0835 (12)
H100.50581.38810.16490.100*
C110.6311 (5)1.3032 (3)0.1194 (4)0.0845 (13)
H110.68921.34860.10890.101*
C120.6541 (4)1.2119 (3)0.1022 (3)0.0747 (10)
H120.72911.19630.08020.090*
C130.7143 (3)0.7586 (2)0.07121 (19)0.0455 (6)
C140.5961 (3)0.7341 (3)0.0916 (2)0.0536 (7)
H140.54340.77880.11200.064*
C150.5562 (3)0.6423 (3)0.0816 (3)0.0677 (10)
H150.47760.62570.09660.081*
C160.6323 (4)0.5764 (3)0.0498 (3)0.0713 (10)
H160.60490.51540.04260.086*
C170.7478 (4)0.6002 (3)0.0288 (3)0.0762 (10)
H170.79950.55510.00770.091*
C180.7895 (3)0.6913 (3)0.0385 (3)0.0657 (9)
H180.86820.70710.02300.079*
C190.8547 (3)0.8686 (2)0.20260 (19)0.0482 (6)
C200.8552 (4)0.9420 (3)0.2627 (2)0.0676 (9)
H200.80580.99380.24870.081*
C210.9274 (5)0.9392 (4)0.3422 (3)0.0918 (14)
H210.92840.98970.38060.110*
C220.9992 (4)0.8613 (4)0.3660 (3)0.0848 (13)
H221.04720.85880.42030.102*
C230.9978 (4)0.7884 (4)0.3078 (3)0.0772 (11)
H231.04470.73570.32320.093*
C240.9277 (3)0.7917 (3)0.2262 (2)0.0599 (8)
H240.92970.74200.18710.072*
B10.8052 (5)1.3180 (4)0.1036 (4)0.0807 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0487 (2)0.0521 (2)0.0826 (3)0.00939 (9)0.01181 (14)0.00601 (10)
P10.0362 (4)0.0431 (4)0.0523 (4)0.0011 (3)0.0121 (3)0.0041 (3)
F10.245 (6)0.113 (4)0.499 (12)0.041 (4)0.270 (8)0.021 (6)
F20.218 (5)0.182 (5)0.206 (5)0.078 (4)0.099 (4)0.093 (4)
F30.189 (4)0.110 (3)0.144 (3)0.050 (3)0.009 (3)0.008 (2)
F40.111 (2)0.086 (2)0.147 (3)0.0048 (16)0.031 (2)0.0423 (18)
N10.0482 (14)0.0483 (15)0.0793 (18)0.0004 (11)0.0006 (12)0.0048 (13)
N20.0437 (15)0.0510 (15)0.086 (2)0.0011 (10)0.0102 (14)0.0044 (12)
C10.0454 (14)0.0577 (18)0.0477 (14)0.0040 (12)0.0132 (11)0.0055 (12)
C20.0433 (17)0.0559 (18)0.0519 (16)0.0048 (12)0.0155 (13)0.0091 (12)
C30.0441 (15)0.0604 (18)0.0472 (14)0.0061 (13)0.0015 (11)0.0023 (12)
C40.0556 (19)0.097 (3)0.0602 (19)0.0023 (19)0.0105 (15)0.0164 (19)
C50.055 (2)0.122 (4)0.067 (2)0.013 (2)0.0178 (17)0.005 (2)
C60.0521 (19)0.095 (3)0.077 (2)0.0181 (19)0.0016 (17)0.017 (2)
C70.0471 (17)0.059 (2)0.105 (3)0.0043 (15)0.0077 (17)0.0066 (19)
C80.0569 (17)0.0523 (17)0.0511 (15)0.0070 (13)0.0012 (12)0.0004 (12)
C90.096 (3)0.055 (2)0.063 (2)0.0141 (18)0.0125 (18)0.0021 (15)
C100.124 (4)0.047 (2)0.078 (3)0.001 (2)0.001 (2)0.0025 (17)
C110.094 (3)0.057 (2)0.100 (3)0.020 (2)0.005 (3)0.011 (2)
C120.060 (2)0.062 (2)0.101 (3)0.0096 (17)0.0013 (19)0.013 (2)
C130.0405 (13)0.0459 (14)0.0506 (14)0.0030 (11)0.0065 (11)0.0011 (11)
C140.0410 (15)0.0550 (19)0.0649 (18)0.0016 (12)0.0045 (13)0.0044 (13)
C150.0472 (17)0.067 (2)0.086 (2)0.0204 (16)0.0057 (16)0.0110 (18)
C160.077 (2)0.0525 (19)0.082 (2)0.0130 (17)0.0072 (19)0.0021 (17)
C170.082 (3)0.052 (2)0.095 (3)0.0042 (18)0.016 (2)0.0147 (18)
C180.0576 (19)0.0549 (19)0.088 (2)0.0021 (15)0.0244 (17)0.0110 (17)
C190.0440 (14)0.0519 (16)0.0510 (15)0.0051 (11)0.0161 (11)0.0026 (12)
C200.077 (2)0.069 (2)0.0588 (19)0.0008 (18)0.0151 (16)0.0069 (16)
C210.105 (4)0.111 (4)0.061 (2)0.012 (3)0.018 (2)0.021 (2)
C220.075 (3)0.126 (4)0.054 (2)0.001 (3)0.0073 (18)0.009 (2)
C230.058 (2)0.102 (3)0.071 (2)0.007 (2)0.0029 (17)0.020 (2)
C240.0484 (16)0.067 (2)0.0648 (19)0.0045 (14)0.0058 (14)0.0041 (15)
B10.065 (3)0.071 (3)0.107 (4)0.006 (2)0.017 (2)0.017 (3)
Geometric parameters (Å, º) top
Ag1—N12.277 (3)C9—C101.392 (7)
Ag1—N22.334 (3)C9—H90.93
Ag1—P12.3579 (8)C10—C111.355 (7)
P1—C131.819 (3)C10—H100.93
P1—C191.819 (3)C11—C121.368 (7)
P1—C11.837 (3)C11—H110.93
F1—B11.335 (7)C12—H120.93
F2—B11.297 (7)C13—C141.386 (4)
F3—B11.343 (7)C13—C181.385 (5)
F4—B11.364 (6)C14—C151.395 (5)
N1—C121.336 (5)C14—H140.93
N1—C81.338 (4)C15—C161.371 (6)
N2—C71.336 (5)C15—H150.93
N2—C31.344 (4)C16—C171.358 (6)
C1—C21.517 (4)C16—H160.93
C1—H1A0.97C17—C181.391 (5)
C1—H1B0.97C17—H170.93
C2—C2i1.528 (6)C18—H180.93
C2—H2A0.97C19—C241.387 (5)
C2—H2B0.97C19—C201.393 (5)
C3—C41.384 (5)C20—C211.372 (6)
C3—C81.485 (5)C20—H200.93
C4—C51.390 (7)C21—C221.392 (8)
C4—H40.93C21—H210.93
C5—C61.380 (7)C22—C231.369 (7)
C5—H50.93C22—H220.93
C6—C71.385 (6)C23—C241.387 (5)
C6—H60.93C23—H230.93
C7—H70.93C24—H240.93
C8—C91.389 (5)
N1—Ag1—N272.08 (10)C9—C10—H10120.2
N1—Ag1—P1144.12 (7)C12—C11—C10119.1 (4)
N2—Ag1—P1139.32 (7)C12—C11—H11120.5
C13—P1—C19103.80 (14)C10—C11—H11120.5
C13—P1—C1105.37 (14)N1—C12—C11122.8 (4)
C19—P1—C1102.65 (13)N1—C12—H12118.6
C13—P1—Ag1115.68 (10)C11—C12—H12118.6
C19—P1—Ag1111.26 (10)C14—C13—C18118.9 (3)
C1—P1—Ag1116.56 (11)C14—C13—P1118.6 (2)
C12—N1—C8118.7 (3)C18—C13—P1122.4 (2)
C12—N1—Ag1124.0 (3)C13—C14—C15119.9 (3)
C8—N1—Ag1117.2 (2)C13—C14—H14120.1
C7—N2—C3118.7 (3)C15—C14—H14120.1
C7—N2—Ag1124.5 (2)C16—C15—C14120.4 (3)
C3—N2—Ag1113.6 (2)C16—C15—H15119.8
C2—C1—P1112.8 (2)C14—C15—H15119.8
C2—C1—H1A109.0C17—C16—C15120.0 (4)
P1—C1—H1A109.0C17—C16—H16120.0
C2—C1—H1B109.0C15—C16—H16120.0
P1—C1—H1B109.0C16—C17—C18120.6 (4)
H1A—C1—H1B107.8C16—C17—H17119.7
C1—C2—C2i112.2 (3)C18—C17—H17119.7
C1—C2—H2A109.2C13—C18—C17120.2 (3)
C2i—C2—H2A109.2C13—C18—H18119.9
C1—C2—H2B109.2C17—C18—H18119.9
C2i—C2—H2B109.2C24—C19—C20118.0 (3)
H2A—C2—H2B107.9C24—C19—P1121.2 (2)
N2—C3—C4121.2 (3)C20—C19—P1120.7 (3)
N2—C3—C8117.2 (3)C21—C20—C19121.1 (4)
C4—C3—C8121.6 (3)C21—C20—H20119.4
C5—C4—C3119.4 (4)C19—C20—H20119.4
C5—C4—H4120.3C20—C21—C22120.5 (5)
C3—C4—H4120.3C20—C21—H21119.7
C6—C5—C4119.6 (4)C22—C21—H21119.7
C6—C5—H5120.2C21—C22—C23118.6 (4)
C4—C5—H5120.2C21—C22—H22120.7
C5—C6—C7117.4 (4)C23—C22—H22120.7
C5—C6—H6121.3C24—C23—C22121.2 (4)
C7—C6—H6121.3C24—C23—H23119.4
N2—C7—C6123.7 (4)C22—C23—H23119.4
N2—C7—H7118.1C23—C24—C19120.4 (4)
C6—C7—H7118.1C23—C24—H24119.8
N1—C8—C9121.5 (3)C19—C24—H24119.8
N1—C8—C3116.7 (3)F2—B1—F3109.5 (6)
C9—C8—C3121.8 (3)F2—B1—F1105.9 (7)
C10—C9—C8118.3 (4)F3—B1—F1107.2 (5)
C10—C9—H9120.8F2—B1—F4109.8 (4)
C8—C9—H9120.8F3—B1—F4113.0 (5)
C11—C10—C9119.5 (4)F1—B1—F4111.2 (5)
C11—C10—H10120.2
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···F3i0.972.503.460 (5)170
C24—H24···F1i0.932.383.042 (8)128
C21—H21···F1ii0.932.443.111 (8)129
Symmetry codes: (i) x+2, y+2, z; (ii) x, y+5/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag2(C10H8N2)2(C28H28P2)](BF4)2
Mr1128.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.7951 (19), 14.402 (3), 15.118 (3)
β (°) 95.274 (3)
V3)2340.5 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.50 × 0.46 × 0.44
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12917, 5086, 4318
Rint0.024
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.131, 1.07
No. of reflections5086
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 1.40

Computer programs: SMART (Bruker,1998), SMART, SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
Ag1—N12.277 (3)Ag1—P12.3579 (8)
Ag1—N22.334 (3)
N1—Ag1—N272.08 (10)C19—P1—C1102.65 (13)
N1—Ag1—P1144.12 (7)C13—P1—Ag1115.68 (10)
N2—Ag1—P1139.32 (7)C19—P1—Ag1111.26 (10)
C13—P1—C19103.80 (14)C1—P1—Ag1116.56 (11)
C13—P1—C1105.37 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···F3i0.972.503.460 (5)170
C24—H24···F1i0.932.383.042 (8)128
C21—H21···F1ii0.932.443.111 (8)129
Symmetry codes: (i) x+2, y+2, z; (ii) x, y+5/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds