Download citation
Download citation
link to html
The di­hydro­pyran ring in the title compound, C19H22O3, adopts a half-chair conformation and the cyclo­hexane ring is in a chair conformation. In addition to van der Waals interactions, the molecular packing in the crystal is stabilized by C—H...π interactions, involving the dihydropyran ring of the symmetry-related mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803009978/ci6225sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803009978/ci6225Isup2.hkl
Contains datablock I

CCDC reference: 172024

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.042
  • wR factor = 0.114
  • Data-to-parameter ratio = 11.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 28.30 From the CIF: _reflns_number_total 2247 Count of symmetry unique reflns 2253 Completeness (_total/calc) 99.73% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

Coumarin derivatives possess a variety of biological activities (Crombic et al., 1985). They are used in oral anticoagulation therapy (Cole et al., 1988; Greenfield, 1988) and in enzyme determination (Michel & Durant, 1976). Coumarin derivatives exhibit solid-state photochemical reactions (Gnanaguru et al., 1985). Some amino- and hydroxycoumarin derivatives are used as laser dyes (Masilamani, 1979). As part of our studies on these derivatives, the X-ray structure determination of the title compound, (I), was undertaken.

The title molecule (Fig. 1) contains a fused four-ring system A/B/C/D. The geometry of the coumarin ring system (Table 1) is comparable to that observed in other coumarin derivatives (Chinnakali et al., 1998, 1999; Krishna et al., 2003). The bond lengths in the dihydropyran ring (C) and cyclohexane ring (D) have normal values (Allen et al., 1987). In the coumarin moiety, the pyran ring is planar within ±0.056 (2) Å and the dihedral angle between the weighted least-squares planes through the benzene and pyran rings is 3.55 (6)°. The dihydropyran ring adopts a half-chair conformation with asymmetry parameter ΔC2(C12—C17) equal to 0.004 (1) (Nardelli, 1983). The cyclohexane ring (D) adopts a chair conformation and the methyl group is equatorially attached to it. The C/D ring junction is trans. An intramolecular C—H···O hydrogen bond involving the carbonyl O atom is observed. The pyran ring of the symmetry-related molecules at (1/2 + x, 3/2 − y, −z) are involved in C—H···π interactions. In Table 2, Cg denotes the centroid of the pyran ring.

Experimental top

To a refluxing solution of 4-hydroxycoumarin (1 mmol) in 10 ml of dry ethanol, citranellal (1 mmol) was added and the reaction mixture was refluxed for 4 h. Evaporation of the solvent under rotor evaporator followed by flash silica-gel chromatography yielded the title compound. The compound was recrystallized from methanol/chloroform (1:1) by slow evaporation.

Refinement top

H atoms were positioned geometrically and were treated as riding on their parent C atoms, with aromatic C—H distances of 0.93 Å, methyl C—H distances of 0.96 Å, methylene C—H distances of 0.98 Å and ethylene C—H distances of 0.97 Å. Due to the lack of anomalous scatterers, the absolute configuration was not determined from the X-ray diffraction data and the Friedel pairs were merged. The absolute configuration is unknown.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
1,2,3,4,4a,12a-Hexahydro-2,5,5-trimethyl-1-H-[2]benzopyrano[3,2-c]coumarin top
Crystal data top
C19H22O3F(000) = 640
Mr = 298.37Dx = 1.248 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6654 reflections
a = 8.8291 (4) Åθ = 2.9–27.6°
b = 9.8819 (4) ŵ = 0.08 mm1
c = 18.2053 (8) ÅT = 293 K
V = 1588.38 (12) Å3Block, colourless
Z = 40.50 × 0.16 × 0.14 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
1960 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 28.3°, θmin = 2.2°
ω scansh = 1111
11019 measured reflectionsk = 1213
2247 independent reflectionsl = 2224
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0647P)2 + 0.1224P]
where P = (Fo2 + 2Fc2)/3
2247 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C19H22O3V = 1588.38 (12) Å3
Mr = 298.37Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.8291 (4) ŵ = 0.08 mm1
b = 9.8819 (4) ÅT = 293 K
c = 18.2053 (8) Å0.50 × 0.16 × 0.14 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
1960 reflections with I > 2σ(I)
11019 measured reflectionsRint = 0.034
2247 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.09Δρmax = 0.21 e Å3
2247 reflectionsΔρmin = 0.21 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00640 (19)0.52266 (13)0.05327 (8)0.0488 (4)
C20.0105 (2)0.60381 (19)0.00866 (11)0.0439 (4)
C30.0244 (2)0.74706 (19)0.00197 (11)0.0376 (4)
C40.0555 (2)0.79865 (18)0.06553 (10)0.0365 (4)
C50.1327 (2)0.7583 (2)0.19655 (11)0.0450 (4)
H50.15020.85010.20370.054*
C60.1573 (3)0.6683 (2)0.25310 (11)0.0525 (5)
H60.19100.69970.29840.063*
C70.1322 (3)0.5311 (2)0.24278 (12)0.0574 (6)
H70.14930.47100.28120.069*
C80.0819 (3)0.4831 (2)0.17590 (13)0.0533 (5)
H80.06460.39110.16910.064*
C90.0576 (2)0.57364 (18)0.11901 (11)0.0412 (4)
C100.0815 (2)0.71163 (18)0.12851 (10)0.0375 (4)
O110.06667 (18)0.93083 (12)0.08116 (7)0.0424 (3)
C120.0135 (3)1.0277 (2)0.02525 (11)0.0431 (4)
C130.0403 (3)1.0758 (2)0.11316 (12)0.0534 (5)
H13A0.07471.16610.10070.064*
H13B0.06781.07950.12240.064*
C140.1227 (3)1.0261 (2)0.18192 (12)0.0549 (5)
H14A0.23101.03360.17410.066*
H14B0.09621.08430.22280.066*
C150.0848 (3)0.8803 (3)0.20200 (11)0.0510 (5)
H150.02190.87720.21670.061*
C160.1047 (3)0.7858 (2)0.13570 (10)0.0450 (4)
H16A0.21120.78020.12300.054*
H16B0.07030.69570.14860.054*
C170.0724 (2)0.97919 (18)0.04916 (10)0.0391 (4)
H170.18280.97260.04480.047*
C180.0148 (2)0.83683 (18)0.06908 (10)0.0391 (4)
H180.09190.84420.08340.047*
C190.1581 (3)1.0321 (3)0.03032 (14)0.0574 (6)
H19A0.19920.94710.01440.086*
H19B0.18761.04870.08030.086*
H19C0.19601.10340.00050.086*
C200.0868 (4)1.15905 (19)0.04955 (12)0.0614 (7)
H20A0.19481.15130.04550.092*
H20B0.05191.23170.01890.092*
H20C0.06001.17730.09970.092*
C210.1797 (4)0.8333 (3)0.26730 (13)0.0694 (7)
H21A0.15390.74150.27920.104*
H21B0.15960.89030.30880.104*
H21C0.28520.83840.25490.104*
O220.0572 (2)0.54743 (16)0.06247 (9)0.0633 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0633 (9)0.0320 (6)0.0512 (8)0.0088 (7)0.0048 (7)0.0023 (6)
C20.0466 (10)0.0374 (9)0.0476 (10)0.0076 (8)0.0018 (9)0.0046 (8)
C30.0376 (8)0.0331 (8)0.0420 (9)0.0024 (7)0.0014 (7)0.0008 (7)
C40.0352 (9)0.0308 (7)0.0436 (9)0.0003 (7)0.0024 (7)0.0006 (7)
C50.0538 (11)0.0378 (9)0.0435 (10)0.0004 (9)0.0003 (9)0.0002 (8)
C60.0628 (13)0.0531 (12)0.0415 (10)0.0005 (11)0.0006 (10)0.0048 (9)
C70.0735 (15)0.0482 (11)0.0507 (12)0.0043 (12)0.0060 (11)0.0163 (10)
C80.0677 (14)0.0333 (9)0.0589 (12)0.0010 (10)0.0104 (11)0.0069 (9)
C90.0443 (10)0.0349 (8)0.0445 (9)0.0012 (8)0.0085 (8)0.0004 (8)
C100.0379 (9)0.0336 (8)0.0410 (9)0.0006 (8)0.0051 (7)0.0013 (7)
O110.0577 (8)0.0294 (6)0.0402 (6)0.0011 (6)0.0053 (6)0.0019 (5)
C120.0570 (11)0.0300 (8)0.0422 (9)0.0039 (9)0.0027 (8)0.0012 (8)
C130.0678 (14)0.0432 (10)0.0492 (11)0.0056 (11)0.0019 (10)0.0102 (9)
C140.0623 (14)0.0575 (12)0.0451 (10)0.0008 (11)0.0047 (10)0.0131 (10)
C150.0497 (11)0.0644 (12)0.0390 (9)0.0035 (11)0.0014 (9)0.0030 (9)
C160.0490 (11)0.0460 (10)0.0400 (9)0.0017 (9)0.0008 (8)0.0031 (8)
C170.0426 (9)0.0346 (8)0.0402 (9)0.0014 (8)0.0020 (8)0.0031 (7)
C180.0394 (9)0.0384 (9)0.0393 (9)0.0018 (8)0.0025 (7)0.0007 (7)
C190.0576 (13)0.0562 (13)0.0583 (12)0.0167 (12)0.0043 (10)0.0018 (11)
C200.0972 (19)0.0320 (9)0.0549 (12)0.0043 (11)0.0071 (13)0.0029 (9)
C210.0864 (18)0.0792 (17)0.0425 (11)0.0029 (16)0.0098 (12)0.0040 (12)
O220.0837 (13)0.0503 (8)0.0560 (9)0.0241 (9)0.0054 (8)0.0095 (7)
Geometric parameters (Å, º) top
O1—C91.375 (2)C13—H13A0.97
O1—C21.392 (2)C13—H13B0.97
C2—O221.200 (2)C14—C151.523 (4)
C2—C31.454 (3)C14—H14A0.97
C3—C41.358 (3)C14—H14B0.97
C3—C181.512 (3)C15—C211.527 (3)
C4—O111.340 (2)C15—C161.536 (3)
C4—C101.452 (3)C15—H150.98
C5—C61.377 (3)C16—C181.534 (3)
C5—C101.397 (3)C16—H16A0.97
C5—H50.93C16—H16B0.97
C6—C71.387 (3)C17—C181.539 (2)
C6—H60.93C17—H170.98
C7—C81.380 (3)C18—H180.98
C7—H70.93C19—H19A0.96
C8—C91.385 (3)C19—H19B0.96
C8—H80.93C19—H19C0.96
C9—C101.391 (3)C20—H20A0.96
O11—C121.474 (2)C20—H20B0.96
C12—C201.516 (3)C20—H20C0.96
C12—C191.518 (3)C21—H21A0.96
C12—C171.528 (3)C21—H21B0.96
C13—C141.528 (3)C21—H21C0.96
C13—C171.532 (3)
C9—O1—C2122.0 (1)C13—C14—H14B108.9
O22—C2—O1115.51 (17)H14A—C14—H14B107.7
O22—C2—C3126.39 (19)C14—C15—C21110.8 (2)
O1—C2—C3118.06 (17)C14—C15—C16111.19 (17)
C4—C3—C2118.95 (18)C21—C15—C16111.4 (2)
C4—C3—C18121.47 (16)C14—C15—H15107.8
C2—C3—C18119.44 (17)C21—C15—H15107.8
O11—C4—C3124.93 (17)C16—C15—H15107.8
O11—C4—C10113.45 (16)C18—C16—C15111.24 (17)
C3—C4—C10121.61 (16)C18—C16—H16A109.4
C6—C5—C10120.06 (18)C15—C16—H16A109.4
C6—C5—H5120.0C18—C16—H16B109.4
C10—C5—H5120.0C15—C16—H16B109.4
C5—C6—C7120.3 (2)H16A—C16—H16B108.0
C5—C6—H6119.8C12—C17—C13114.57 (16)
C7—C6—H6119.8C12—C17—C18112.54 (16)
C8—C7—C6120.5 (2)C13—C17—C18109.20 (15)
C8—C7—H7119.8C12—C17—H17106.7
C6—C7—H7119.8C13—C17—H17106.7
C7—C8—C9119.18 (18)C18—C17—H17106.7
C7—C8—H8120.4C3—C18—C16114.62 (16)
C9—C8—H8120.4C3—C18—C17109.10 (15)
O1—C9—C8117.71 (17)C16—C18—C17108.41 (16)
O1—C9—C10121.15 (18)C3—C18—H18108.2
C8—C9—C10121.12 (19)C16—C18—H18108.2
C9—C10—C5118.87 (18)C17—C18—H18108.2
C9—C10—C4117.31 (18)C12—C19—H19A109.5
C5—C10—C4123.80 (17)C12—C19—H19B109.5
C4—O11—C12117.6 (2)H19A—C19—H19B109.5
O11—C12—C20102.63 (16)C12—C19—H19C109.5
O11—C12—C19107.11 (18)H19A—C19—H19C109.5
C20—C12—C19112.6 (2)H19B—C19—H19C109.5
O11—C12—C17107.45 (15)C12—C20—H20A109.5
C20—C12—C17112.47 (19)C12—C20—H20B109.5
C19—C12—C17113.73 (19)H20A—C20—H20B109.5
C14—C13—C17109.57 (18)C12—C20—H20C109.5
C14—C13—H13A109.8H20A—C20—H20C109.5
C17—C13—H13A109.8H20B—C20—H20C109.5
C14—C13—H13B109.8C15—C21—H21A109.5
C17—C13—H13B109.8C15—C21—H21B109.5
H13A—C13—H13B108.2H21A—C21—H21B109.5
C15—C14—C13113.32 (19)C15—C21—H21C109.5
C15—C14—H14A108.9H21A—C21—H21C109.5
C13—C14—H14A108.9H21B—C21—H21C109.5
C15—C14—H14B108.9
C9—O1—C2—O22179.48 (19)C10—C4—O11—C12168.33 (16)
C9—O1—C2—C31.4 (3)C4—O11—C12—C20162.8 (2)
O22—C2—C3—C4170.6 (2)C4—O11—C12—C1978.5 (2)
O1—C2—C3—C47.3 (3)C4—O11—C12—C1744.1 (2)
O22—C2—C3—C185.2 (3)C17—C13—C14—C1554.8 (3)
O1—C2—C3—C18176.98 (16)C13—C14—C15—C21175.5 (2)
C2—C3—C4—O11169.35 (19)C13—C14—C15—C1651.1 (3)
C18—C3—C4—O116.3 (3)C14—C15—C16—C1853.4 (3)
C2—C3—C4—C1011.3 (3)C21—C15—C16—C18177.5 (2)
C18—C3—C4—C10173.03 (17)O11—C12—C17—C13174.47 (17)
C10—C5—C6—C70.3 (4)C20—C12—C17—C1362.3 (2)
C5—C6—C7—C80.1 (4)C19—C12—C17—C1367.2 (2)
C6—C7—C8—C90.3 (4)O11—C12—C17—C1860.0 (2)
C2—O1—C9—C8175.09 (19)C20—C12—C17—C18172.19 (18)
C2—O1—C9—C106.1 (3)C19—C12—C17—C1858.4 (2)
C7—C8—C9—O1179.5 (2)C14—C13—C17—C12172.33 (19)
C7—C8—C9—C100.7 (3)C14—C13—C17—C1860.4 (2)
O1—C9—C10—C5179.61 (17)C4—C3—C18—C16131.78 (19)
C8—C9—C10—C50.8 (3)C2—C3—C18—C1652.6 (2)
O1—C9—C10—C42.2 (3)C4—C3—C18—C1710.0 (2)
C8—C9—C10—C4179.04 (19)C2—C3—C18—C17174.32 (18)
C6—C5—C10—C90.7 (3)C15—C16—C18—C3178.25 (17)
C6—C5—C10—C4178.7 (2)C15—C16—C18—C1759.6 (2)
O11—C4—C10—C9173.90 (17)C12—C17—C18—C343.0 (2)
C3—C4—C10—C96.7 (3)C13—C17—C18—C3171.40 (16)
O11—C4—C10—C58.0 (3)C12—C17—C18—C16168.44 (16)
C3—C4—C10—C5171.41 (19)C13—C17—C18—C1663.2 (2)
C3—C4—O11—C1212.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···O220.972.423.061 (3)123
C19—H19A···Cgi0.962.903.681 (3)140
Symmetry code: (i) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC19H22O3
Mr298.37
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.8291 (4), 9.8819 (4), 18.2053 (8)
V3)1588.38 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.16 × 0.14
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11019, 2247, 1960
Rint0.034
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.114, 1.09
No. of reflections2247
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 1990), SHELXL97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
O1—C91.375 (2)C5—C61.377 (3)
O1—C21.392 (2)C5—C101.397 (3)
C2—O221.200 (2)C6—C71.387 (3)
C2—C31.454 (3)C7—C81.380 (3)
C3—C41.358 (3)C8—C91.385 (3)
C3—C181.512 (3)C9—C101.391 (3)
C4—O111.340 (2)O11—C121.474 (2)
C4—C101.452 (3)
O22—C2—O1115.51 (17)O1—C9—C8117.71 (17)
O22—C2—C3126.39 (19)C5—C10—C4123.80 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···O220.972.423.061 (3)123
C19—H19A···Cgi0.962.903.681 (3)140
Symmetry code: (i) x+1/2, y+3/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds