Download citation
Download citation
link to html
In the acridine moiety of the title compound, C22H26N2O2·H2O, the central di­hydro­pyridine ring adopts a flattened boat conformation, while the outer cyclo­hexene rings adopt sofa conformations. In the crystal structure, N—H...O and O—H...O hydrogen bonds involving the water mol­ecule and C—H...O hydrogen bonds link the inversion-related mol­ecules to form layers parallel to the (011) plane. Adjacent layers are linked by O—H...N hydrogen bonds involving the water mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803007864/ci6216sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803007864/ci6216Isup2.hkl
Contains datablock I

CCDC reference: 214617

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.051
  • wR factor = 0.146
  • Data-to-parameter ratio = 18.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Acridine derivatives exhibit a wide range of biological activites, especially as mutagenic, antitumour (Talacki et al., 1974) and antiamoebic activities (Prasad Krishna et al., 1984). Acridine-containing drugs have been found to posses antiprotozoal activity (Karolak-Wojciechowska et al., 1996) and are used for the treatment of Alzheimer's disease (Bandoli et al., 1994). The ability of acridine to interclate between the base pairs of DNA is well known (Neidle, 1979; Fan et al., 1997). Substituted hexahydroacridine-1,8-dione, which resembles K-channel openers, relaxes KCl preconcentrated urinary-bladder smooth muscle in vitro (Li et al., 1996; Trivedi et al., 1995). Acridine-1,8-diones exhibit fluorescence and laser activities (Selladurai et al., 1990). The acridinediones were found to lase around 475–495 nm (Murugan et al., 1998). The present study of the title compound, (I), is part of a series of investigations on the crystal structures of acridinedione derivatives.

In the acridine moiety, the central pyridine ring (B) adopts a flattened boat conformation, while the outer rings (A and C) adopt sofa conformations as confirmed by the total puckering amplitudes (Cremer & pople, 1975) [QT = 0.470 (2), 0.144 (2) and 0.469 (2) Å for rings A, B and C, respectively] and the asymmetry parameters (Nardelli, 1983) [ΔS(C1A) = 0.032 (1), ΔS(C9) = 0.007 (1) and ΔS(C1A—C4A) = 0.021 (1), ΔS(C6) = 0.001 (1) for rings A, B and C, respectively]. The puckering of ring B is quite small, owing to the π conjugation along the C1A—C4A—N10—C5A—C8A system, as indicated by the bond distances: C1A—C4A = 1.360 (2), C4A—N10 = 1.366 (2), N10—C5A = 1.377 (2) and C5A—C8A = 1.357 (2) Å. Similar features have also been observed in other acridinedione analogs (Gunasekaran et al., 1997; Ganesh, Banumathi et al., 1998; Ganesh et al., 1999; Sankaranarayananan et al., 1998). The C4A—C1A—C9—C15 torsion angle of 111.8 (2)° shows that the pyridyl ring (D) is axial to the acridine moiety. The acridine moiety is folded about the line passing through the atoms C9 and N10, as seen from the dihedral angle of 14.38 (3)° between C1/C2/C4/C4A/N10/C9/C1A and C5/C7/C8/C8A/C9/N10/C5A planes. The folding of acridine moiety about the C9···N10 line is well reported (Ganesh, Velmurugan et al., 1998; Ganesh, Velmurugan et al., 1998; Ganesh et al., 1999; Sankaranarayanan et al., 1998, 1999; Jeyakanthan et al., 2000, 2002). The sum of the bond angles around N10 [359.3 (1)°] indicates sp2 hybridization. In the B ring, the C—N bond lengths (Table 1) are in agreement with the mean Csp2—Nsp2 bond length of 1.355 (14) Å reported by Allen et al. (1987).

The hydrogen-bonding network involving the water molecules is shown in Fig. 2. The water molecules take part in O—H···O, N—H···O and O—H···N hydrogen bonds. The N10—H10···O1Wi, O1W—H2W···O1iii, C11—H11B···O1iii and C17—H17··· O2iv (symmetry codes as in Table 2) hydrogen bonds link the inversion related molecules to form layers parallel to the (01) plane. The adjacent layers are linked by O1W—H1W···N18ii hydrogen bonds.

Experimental top

To the dimedone (0.75 g, 5.3 mmol) and 4-pyridine carbonaldehyde (0.28 g, 2.6 mmol) in ethanol was added ammmonium hydroxide (excess) and the mixture was refluxed for 8 h to afford the title compound. Single crystals were grown by slow evaporation from a solution in chloroform–methanol (1:1).

Refinement top

Atoms H10, H1W and H2W were located from a difference Fourier map and refined isotropically; the remaining H atoms were fixed geometrically and allowed to ride on their attached atoms. For the refined H atoms, the O—H distances range from 0.85 (3) to 0.91 (3) Å and the N—H distance is 0.93 (2) Å. The rotating group refinement was used for the methyl groups.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997) and PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound showing 35% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the hydrogen-bonding network involving the water molecules [symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 1 − x, −y, 1 − z; (iii) −x, 1 − y, 1 − z]. For clarity, H atoms not involved in hydrogen bonding have been omitted.
3,3,6,6-Tetramethyl-9-(4-pyridyl)-3,4,6,7,9,10-hexahydro- 1,8(2H,5H)-acridinedione monohydrate top
Crystal data top
C22H26N2O2·H2OZ = 2
Mr = 368.46F(000) = 396
Triclinic, P1Dx = 1.220 Mg m3
Hall symbol: -P 1Melting point: 511-513 K K
a = 9.1333 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8999 (5) ÅCell parameters from 3984 reflections
c = 12.0435 (7) Åθ = 1.8–28.3°
α = 74.876 (1)°µ = 0.08 mm1
β = 81.705 (1)°T = 293 K
γ = 73.137 (1)°Plate, yellow
V = 1003.26 (9) Å30.48 × 0.26 × 0.12 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3516 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 28.3°, θmin = 1.8°
ω scansh = 1212
7019 measured reflectionsk = 1312
4804 independent reflectionsl = 1316
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0728P)2 + 0.1035P]
where P = (Fo2 + 2Fc2)/3
4804 reflections(Δ/σ)max = 0.001
260 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C22H26N2O2·H2Oγ = 73.137 (1)°
Mr = 368.46V = 1003.26 (9) Å3
Triclinic, P1Z = 2
a = 9.1333 (5) ÅMo Kα radiation
b = 9.8999 (5) ŵ = 0.08 mm1
c = 12.0435 (7) ÅT = 293 K
α = 74.876 (1)°0.48 × 0.26 × 0.12 mm
β = 81.705 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3516 reflections with I > 2σ(I)
7019 measured reflectionsRint = 0.022
4804 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.23 e Å3
4804 reflectionsΔρmin = 0.19 e Å3
260 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47052 (12)0.51292 (13)0.70731 (12)0.0527 (3)
O20.20524 (14)0.20835 (14)1.04544 (11)0.0602 (4)
C10.34329 (16)0.56762 (16)0.66816 (14)0.0379 (3)
C1A0.21214 (15)0.51385 (14)0.72094 (13)0.0309 (3)
C20.32160 (18)0.69636 (19)0.56611 (17)0.0490 (4)
H2A0.41140.68120.51230.059*
H2B0.31690.78190.59290.059*
C30.17951 (17)0.72720 (16)0.50090 (14)0.0390 (4)
C40.04294 (16)0.72514 (15)0.59025 (13)0.0364 (3)
H4A0.02110.80940.62280.044*
H4B0.04650.73190.55230.044*
C4A0.07039 (15)0.59057 (14)0.68612 (12)0.0298 (3)
C50.20506 (16)0.43439 (16)0.90189 (14)0.0374 (3)
H5A0.27620.45060.84430.045*
H5B0.24460.50940.94490.045*
C5A0.05243 (15)0.44741 (14)0.84233 (12)0.0304 (3)
C60.19773 (17)0.28628 (16)0.98449 (14)0.0392 (3)
C70.0664 (2)0.25336 (18)1.06172 (14)0.0441 (4)
H7A0.09710.31711.11480.053*
H7B0.05130.15451.10730.053*
C80.08506 (18)0.27034 (16)0.99898 (14)0.0388 (3)
C8A0.08385 (15)0.36649 (14)0.88446 (13)0.0320 (3)
C90.23673 (15)0.37883 (15)0.81859 (13)0.0327 (3)
H90.30170.38970.87200.039*
N100.05847 (13)0.55281 (13)0.74124 (11)0.0326 (3)
C110.1966 (2)0.6129 (2)0.43276 (18)0.0621 (5)
H11A0.21460.51860.48430.093*
H11B0.28150.61570.37590.093*
H11C0.10430.63240.39520.093*
C120.1547 (2)0.8765 (2)0.41738 (18)0.0586 (5)
H12A0.06000.89940.38210.088*
H12B0.23810.87520.35880.088*
H12C0.15040.94840.45890.088*
C130.1693 (2)0.16885 (19)0.91682 (18)0.0559 (5)
H13A0.24820.19460.86450.084*
H13B0.17060.07770.96950.084*
H13C0.07120.16050.87400.084*
C140.3504 (2)0.2939 (2)1.05768 (18)0.0583 (5)
H14A0.43190.31521.00840.088*
H14B0.36930.36881.09900.088*
H14C0.34570.20241.11150.088*
C150.31978 (15)0.24181 (15)0.77534 (14)0.0347 (3)
C160.43920 (17)0.13710 (16)0.83273 (15)0.0425 (4)
H160.46970.14880.89930.051*
C170.51243 (18)0.01553 (17)0.79067 (17)0.0488 (4)
H170.59180.05310.83090.059*
N180.47621 (16)0.00946 (14)0.69589 (14)0.0503 (4)
C190.3623 (2)0.09124 (19)0.64123 (18)0.0572 (5)
H190.33470.07710.57460.069*
C200.2820 (2)0.21608 (17)0.67755 (16)0.0507 (4)
H200.20270.28240.63590.061*
O1W0.34140 (13)0.28404 (15)0.34464 (12)0.0491 (3)
H100.155 (2)0.608 (2)0.7179 (17)0.056 (5)*
H1W0.399 (3)0.196 (3)0.333 (2)0.081 (7)*
H2W0.400 (3)0.340 (3)0.327 (2)0.100 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0263 (5)0.0522 (7)0.0753 (9)0.0096 (5)0.0054 (5)0.0076 (6)
O20.0512 (7)0.0650 (8)0.0520 (8)0.0072 (6)0.0194 (6)0.0070 (6)
C10.0266 (7)0.0355 (7)0.0517 (9)0.0075 (6)0.0001 (6)0.0130 (7)
C1A0.0257 (6)0.0284 (6)0.0386 (8)0.0061 (5)0.0015 (5)0.0094 (6)
C20.0357 (8)0.0484 (9)0.0602 (11)0.0181 (7)0.0013 (7)0.0025 (8)
C30.0342 (7)0.0368 (8)0.0406 (8)0.0076 (6)0.0041 (6)0.0055 (7)
C40.0301 (7)0.0300 (7)0.0421 (8)0.0031 (5)0.0003 (6)0.0034 (6)
C4A0.0267 (6)0.0272 (6)0.0350 (7)0.0059 (5)0.0005 (5)0.0093 (6)
C50.0292 (7)0.0370 (7)0.0433 (8)0.0095 (6)0.0015 (6)0.0060 (6)
C5A0.0295 (7)0.0286 (6)0.0334 (7)0.0085 (5)0.0009 (5)0.0075 (6)
C60.0401 (8)0.0362 (7)0.0427 (9)0.0163 (6)0.0030 (7)0.0080 (6)
C70.0544 (10)0.0406 (8)0.0352 (8)0.0149 (7)0.0022 (7)0.0030 (7)
C80.0431 (8)0.0335 (7)0.0393 (8)0.0083 (6)0.0082 (7)0.0066 (6)
C8A0.0308 (7)0.0285 (6)0.0361 (8)0.0065 (5)0.0044 (6)0.0070 (6)
C90.0255 (6)0.0303 (7)0.0418 (8)0.0046 (5)0.0082 (6)0.0076 (6)
N100.0220 (5)0.0320 (6)0.0387 (7)0.0046 (5)0.0037 (5)0.0014 (5)
C110.0698 (13)0.0619 (12)0.0511 (11)0.0078 (9)0.0074 (9)0.0244 (9)
C120.0548 (11)0.0518 (10)0.0552 (11)0.0156 (8)0.0073 (9)0.0074 (9)
C130.0620 (11)0.0489 (10)0.0668 (12)0.0246 (9)0.0000 (9)0.0220 (9)
C140.0544 (11)0.0621 (11)0.0574 (11)0.0285 (9)0.0114 (9)0.0056 (9)
C150.0264 (6)0.0276 (6)0.0473 (9)0.0053 (5)0.0044 (6)0.0054 (6)
C160.0334 (8)0.0382 (8)0.0503 (10)0.0023 (6)0.0112 (7)0.0044 (7)
C170.0343 (8)0.0342 (8)0.0655 (12)0.0019 (6)0.0064 (8)0.0009 (8)
N180.0478 (8)0.0318 (7)0.0631 (10)0.0023 (6)0.0011 (7)0.0085 (6)
C190.0685 (12)0.0409 (9)0.0614 (12)0.0033 (8)0.0161 (10)0.0169 (8)
C200.0508 (9)0.0362 (8)0.0621 (11)0.0047 (7)0.0250 (8)0.0130 (8)
O1W0.0297 (6)0.0420 (7)0.0734 (9)0.0025 (5)0.0089 (5)0.0147 (6)
Geometric parameters (Å, º) top
O1—C11.2352 (18)C8A—C91.524 (2)
O2—C81.2255 (19)C9—C151.531 (2)
C1—C1A1.4477 (19)C9—H90.98
C1—C21.510 (2)N10—H100.93 (2)
C1A—C4A1.3597 (18)C11—H11A0.96
C1A—C91.5172 (19)C11—H11B0.96
C2—C31.527 (2)C11—H11C0.96
C2—H2A0.97C12—H12A0.96
C2—H2B0.97C12—H12B0.96
C3—C41.526 (2)C12—H12C0.96
C3—C121.531 (2)C13—H13A0.96
C3—C111.524 (3)C13—H13B0.96
C4—C4A1.5026 (19)C13—H13C0.96
C4—H4A0.97C14—H14A0.96
C4—H4B0.97C14—H14B0.96
C4A—N101.3660 (17)C14—H14C0.96
C5—C5A1.4973 (19)C15—C201.377 (2)
C5—C61.531 (2)C15—C161.389 (2)
C5—H5A0.97C16—C171.380 (2)
C5—H5B0.97C16—H160.93
C5A—C8A1.3565 (19)C17—N181.333 (2)
C5A—N101.3774 (18)C17—H170.93
C6—C131.530 (2)N18—C191.328 (2)
C6—C71.532 (2)C19—C201.386 (2)
C6—C141.532 (2)C19—H190.93
C7—C81.510 (2)C20—H200.93
C7—H7A0.97O1W—H1W0.91 (3)
C7—H7B0.97O1W—H2W0.85 (3)
C8—C8A1.457 (2)
O1—C1—C1A121.16 (14)C5A—C8A—C9122.11 (13)
O1—C1—C2119.84 (13)C8—C8A—C9118.60 (12)
C1A—C1—C2118.96 (12)C1A—C9—C8A110.00 (11)
C4A—C1A—C1118.98 (13)C1A—C9—C15111.88 (12)
C4A—C1A—C9122.27 (12)C8A—C9—C15111.53 (11)
C1—C1A—C9118.63 (12)C1A—C9—H9107.7
C1—C2—C3115.90 (12)C8A—C9—H9107.7
C1—C2—H2A108.3C15—C9—H9107.7
C3—C2—H2A108.3C4A—N10—C5A121.49 (12)
C1—C2—H2B108.3C4A—N10—H10120.4 (12)
C3—C2—H2B108.3C5A—N10—H10117.4 (12)
H2A—C2—H2B107.4C3—C11—H11A109.5
C4—C3—C12109.95 (12)C3—C11—H11B109.5
C4—C3—C11109.78 (14)H11A—C11—H11B109.5
C12—C3—C11108.91 (15)C3—C11—H11C109.5
C4—C3—C2107.33 (14)H11A—C11—H11C109.5
C12—C3—C2109.75 (14)H11B—C11—H11C109.5
C11—C3—C2111.12 (14)C3—C12—H12A109.5
C4A—C4—C3112.79 (11)C3—C12—H12B109.5
C4A—C4—H4A109.0H12A—C12—H12B109.5
C3—C4—H4A109.0C3—C12—H12C109.5
C4A—C4—H4B109.0H12A—C12—H12C109.5
C3—C4—H4B109.0H12B—C12—H12C109.5
H4A—C4—H4B107.8C6—C13—H13A109.5
C1A—C4A—N10121.20 (12)C6—C13—H13B109.5
C1A—C4A—C4123.29 (12)H13A—C13—H13B109.5
N10—C4A—C4115.44 (11)C6—C13—H13C109.5
C5A—C5—C6113.07 (12)H13A—C13—H13C109.5
C5A—C5—H5A109.0H13B—C13—H13C109.5
C6—C5—H5A109.0C6—C14—H14A109.5
C5A—C5—H5B109.0C6—C14—H14B109.5
C6—C5—H5B109.0H14A—C14—H14B109.5
H5A—C5—H5B107.8C6—C14—H14C109.5
C8A—C5A—N10121.02 (12)H14A—C14—H14C109.5
C8A—C5A—C5123.82 (13)H14B—C14—H14C109.5
N10—C5A—C5115.12 (12)C20—C15—C16116.39 (14)
C13—C6—C5110.43 (14)C20—C15—C9122.27 (13)
C13—C6—C7110.36 (14)C16—C15—C9121.33 (14)
C5—C6—C7107.55 (12)C17—C16—C15119.76 (16)
C13—C6—C14109.40 (14)C17—C16—H16120.1
C5—C6—C14108.86 (13)C15—C16—H16120.1
C7—C6—C14110.21 (14)N18—C17—C16123.93 (15)
C8—C7—C6115.32 (13)N18—C17—H17118.0
C8—C7—H7A108.4C16—C17—H17118.0
C6—C7—H7A108.4C19—N18—C17116.01 (15)
C8—C7—H7B108.4N18—C19—C20123.93 (18)
C6—C7—H7B108.4N18—C19—H19118.0
H7A—C7—H7B107.5C20—C19—H19118.0
O2—C8—C8A121.12 (14)C15—C20—C19119.97 (15)
O2—C8—C7120.43 (14)C15—C20—H20120.0
C8A—C8—C7118.40 (13)C19—C20—H20120.0
C5A—C8A—C8119.21 (13)H1W—O1W—H2W107 (2)
O1—C1—C1A—C4A170.15 (15)N10—C5A—C8A—C94.9 (2)
C2—C1—C1A—C4A7.6 (2)C5—C5A—C8A—C9177.42 (13)
O1—C1—C1A—C96.0 (2)O2—C8—C8A—C5A171.49 (15)
C2—C1—C1A—C9176.23 (14)C7—C8—C8A—C5A6.0 (2)
O1—C1—C2—C3161.76 (15)O2—C8—C8A—C95.2 (2)
C1A—C1—C2—C320.4 (2)C7—C8—C8A—C9177.32 (13)
C1—C2—C3—C448.70 (18)C4A—C1A—C9—C8A12.75 (19)
C1—C2—C3—C12168.15 (14)C1—C1A—C9—C8A163.26 (13)
C1—C2—C3—C1171.33 (19)C4A—C1A—C9—C15111.79 (15)
C12—C3—C4—C4A170.75 (14)C1—C1A—C9—C1572.19 (16)
C11—C3—C4—C4A69.46 (17)C5A—C8A—C9—C1A13.75 (19)
C2—C3—C4—C4A51.42 (17)C8—C8A—C9—C1A162.85 (12)
C1—C1A—C4A—N10173.15 (13)C5A—C8A—C9—C15111.00 (15)
C9—C1A—C4A—N102.9 (2)C8—C8A—C9—C1572.41 (17)
C1—C1A—C4A—C43.6 (2)C1A—C4A—N10—C5A8.1 (2)
C9—C1A—C4A—C4179.56 (13)C4—C4A—N10—C5A168.87 (12)
C3—C4—C4A—C1A28.0 (2)C8A—C5A—N10—C4A7.0 (2)
C3—C4—C4A—N10155.10 (13)C5—C5A—N10—C4A170.85 (13)
C6—C5—C5A—C8A23.8 (2)C1A—C9—C15—C2043.72 (19)
C6—C5—C5A—N10158.36 (13)C8A—C9—C15—C2079.97 (18)
C5A—C5—C6—C1370.80 (17)C1A—C9—C15—C16135.57 (14)
C5A—C5—C6—C749.67 (17)C8A—C9—C15—C16100.75 (16)
C5A—C5—C6—C14169.07 (14)C20—C15—C16—C170.1 (2)
C13—C6—C7—C869.92 (17)C9—C15—C16—C17179.40 (14)
C5—C6—C7—C850.60 (17)C15—C16—C17—N180.2 (3)
C14—C6—C7—C8169.14 (14)C16—C17—N18—C190.0 (3)
C6—C7—C8—O2158.42 (15)C17—N18—C19—C200.3 (3)
C6—C7—C8—C8A24.1 (2)C16—C15—C20—C190.2 (3)
N10—C5A—C8A—C8171.69 (13)C9—C15—C20—C19179.10 (16)
C5—C5A—C8A—C86.0 (2)N18—C19—C20—C150.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···O1Wi0.93 (2)1.87 (2)2.799 (2)174 (2)
O1W—H1W···N18ii0.91 (3)1.96 (3)2.869 (2)179 (2)
O1W—H2W···O1iii0.85 (3)2.06 (3)2.902 (2)175 (2)
C11—H11B···O1iii0.962.473.326 (2)149
C17—H17···O2iv0.932.443.366 (2)172
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC22H26N2O2·H2O
Mr368.46
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.1333 (5), 9.8999 (5), 12.0435 (7)
α, β, γ (°)74.876 (1), 81.705 (1), 73.137 (1)
V3)1003.26 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.48 × 0.26 × 0.12
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7019, 4804, 3516
Rint0.022
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.146, 1.03
No. of reflections4804
No. of parameters260
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.19

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997) and PLATON (Spek, 1990), SHELXL97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
O1—C11.2352 (18)C9—C151.531 (2)
O2—C81.2255 (19)C17—N181.333 (2)
C4A—N101.3660 (17)N18—C191.328 (2)
C5A—N101.3774 (18)
C4A—N10—C5A121.49 (12)C19—N18—C17116.01 (15)
C1A—C9—C15—C2043.72 (19)C8A—C9—C15—C16100.75 (16)
C1A—C9—C15—C16135.57 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···O1Wi0.93 (2)1.87 (2)2.799 (2)174 (2)
O1W—H1W···N18ii0.91 (3)1.96 (3)2.869 (2)179 (2)
O1W—H2W···O1iii0.85 (3)2.06 (3)2.902 (2)175 (2)
C11—H11B···O1iii0.962.473.326 (2)149
C17—H17···O2iv0.932.443.366 (2)172
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds