Download citation
Download citation
link to html
In the title compound, C28H28N6O, the naphthyridine moiety is planar and the pyrrolidine ring adopts a half-chair conformation. The di­methyl­amino­phenyl substituent is nearly orthogonal to the naphthyridine moiety, while the methoxy­phenyl ring is twisted from it by 11.3 (2)°. The molecular structure is stabilized by an N—H...π interaction. In the solid state, the inversion-related mol­ecules are linked to form N—H...N hydrogen-bonded dimers. The molecular packing is stabilized by weak C—H...π and π–π interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803001235/ci6195sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803001235/ci6195Isup2.hkl
Contains datablock I

CCDC reference: 192315

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.067
  • wR factor = 0.196
  • Data-to-parameter ratio = 15.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
RINTA_01 Alert C The value of Rint is greater than 0.10 Rint given 0.100 PLAT_371 Alert C Long C(sp2)-C(sp1) Bond C(8) - C(12) = 1.43 Ang. PLAT_420 Alert C D-H Without Acceptor N(11) - H(11B) ?
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
3 Alert Level C = Please check

Comment top

Naphthyridine derivatives have a wide range of biological activities, such as anti-inflammatory, anticonvulsant (Balogh et al., 1986), insecticidal (Takeuchi & Hamada, 1975), antitumour (El-Subbagh et al., 1999), tuberculostatic (Ferrarini et al., 1998), cardiotonic (Mohan & Mishra, 1997) and antibacterial (Datta et al., 1995). They have been reported as potential drugs for the treatment of bladder function disorders (Natsugari et al., 1999). The naphthyridine derivatives also act as dyes (Irikawa & Iijima, 1998). Since naphthyridine derivatives come under the class of heterocyclic compounds, it is expected that they possess laser and non-linear optical properties (Lowe, 1984; Shanmugasundaram et al., 1993; Murugan et al., 1998). 1,6-Naphthyridine derivatives have been tested pharmacologically as antagonists at adrenoreceptors (Brown et al., 1993) and are also used as novel potent adenosine 3',5'-cyclic phosphate phosphodiesterase III inhibitors (Singh et al., 1995). The structure analysis of the title compound, (I), was carried out as part of our studies on 1,6-naphthyridine derivatives (Sankaranarayanan et al., 1999, 2001; Govindasamy et al., 2000).

The five rings of the molecules are identified as A (C5/N6/C7–C10), B (N1/C2–C4/C10/C9), C (C19–C24), D (N14/C15–C18) and E (C27–C32). The pyrrolidine ring adopts a half-chair conformation, which was confirmed using ring-puckering parameters (Cremer & Pople, 1975); q2 = 0.296 (6) Å and ϕ = 93.2 (9)°, and the asymmetry parameters ΔC2(N14) = 0.009 (2) (Nardelli, 1983). The naphthyridine moiety is planar with the fused pyridine rings (rings A and B) form a dihedral angle of 2.9 (1)°. The mean planes passing through phenyl rings C and E make diheral angles of 12.7 (1) and 87.0 (2)°, respectively, with ring B. The best plane through the pyrrolidine ring (D) makes a dihedral angle of 13.7 (4)° with the pyridine ring (A). The orientation of the substituents on the 1,6-naphthyridine ring may be determined by using the the following torsion angels at C2, C4 and C7: N1—C2—C19—C20 [−12.5 (7)°], C3—C2—C19—C24 [−13.4 (8)°], C3—C4—C27—C28 [−91.5 (6)°], C10—C4—C27—C32 [−94.1 (7)°], N6—C7—N14—C15 [3.8 (7)°] and C8—C7—N14—C18 [8.5 (9)°]. Methoxy group is coplanar [C21—C22—O25—C26 = −179.6 (5)°] with the attched phenyl ring (C).

The bond distances and angles are comparable with the related structures studied previously (Chinnakali et al., 1998; Sankaranarayanan et al., 1999, 2001; Govindasamy et al., 2000; Thirumurugan et al., 1999). The bond distance C5—N11 [1.346 (6) Å] is shorter than the typical C—N single bond distance (1.47 Å) as in the other related strucutres, indicating conjugation of the amino group with the aromatic naphthyridine moiety. The sum of the bond angles around atom N14 is 359.8 (4)°, indicating sp2 hybridization. The sum of the bond angles around atom N33 is 349.8 (4)°, indicating pyramidalization. The cyano bond distance C12—N13 [1.148 (6) Å] and the angle C8—C12—N13 [177.3 (6)°] are comparable with the related structures. Due to steric interactions, the bond angles C4—C10—C5 [127.2 (4)°], C8—C7—N14 [125.4 (5)°] and C3—C2—C19 [122.4 (5)°] are widened from 120°, while angles N1—C9—C8 [116.8 (4)°], N14—C7—N6 [113.3 (5)°] and N1—C2—C19 [116.5 (4)°] are narrowed from 120°.

One of the amino H atoms, H11B, is involved in an intramolecular N—H···π interaction [N11—H11B = 0.86 Å, H11B···Cg(E) = 2.63 Å, N11···Cg(E) = 3.470 (3) Å and N11—H11B···Cg(E) = 166°, where Cg(E) is the centroid of ring E]. The other H atom, H11A, is involved in the formation of centrosymmetrically hydrogen-bonded (N11—H11A···N33) dimers in the solid state [N11—H11A = 0.86 Å, H11A···N33i = 2.25 Å, N11···N33i = 3.106 (6) Å and N11—H11A···N33i = 173°; symmetry code: (i) 1 − x, −y, 1 − z]. The B ring of the molecules at (x, y, z) and E ring of the molecules at (-x, −y, 1 − z) are arranged in a face-to-edge manner, with their centroids separated by 4.741 (3) Å. Apart from these interactions, the molecular packing is stablized by weak C—H···π interactions [C28—H28 = 0.93 Å, H28···Cg(A) = 2.58 Å, C28···Cg(A) = 3.443 (6) Å and C28—H28···Cg(A) = 155°, where Cg(A) is the centroid of ring A at (-x, −y, 1 − z)].

Experimental top

Refluxing a solution of 3-(4-dimethylaminophenyl)-1-(4-methoxyphenyl)-prop-2-en-1-one (0.5 g, 1.77 mmol), malononitrile (0.23 g, 3.48 mmol) and pyrrolidine (0.25 g, 3.52 mmol) in ethanol for 19 h gave the title compound. Single crystals were grown by slow evaporation of a solution in ethanol–ethylacetate (1:1). The melting point of the title compound is 491–493 K.

Refinement top

After checking their presence in the difference map, all H atoms were positioned geometrically and allowed to ride on their attached atoms using SHELXL97 (Sheldrick, 1997) defaults for bond lengths and displacement parameters. The high Rint value (0.1) and low ratio (0.3) of observed to unique reflections may be as a result of the poor diffraction quality of the crystal.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997) and PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. The molecular packing, viewed down the a axis.
5-Amino-4-(4-dimethylaminophenyl)-2-(4-methoxyphenyl)-7-(pyrrolidin-1-yl)- 1,6-naphthyridine-8-carbonitrile top
Crystal data top
C28H28N6OZ = 2
Mr = 464.56F(000) = 492
Triclinic, P1Dx = 1.266 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 10.671 (2) ÅCell parameters from 25 reflections
b = 10.974 (1) Åθ = 10–35°
c = 11.826 (2) ŵ = 0.64 mm1
α = 82.82 (1)°T = 293 K
β = 64.04 (1)°Parallelepiped, yellow
γ = 78.32 (1)°0.48 × 0.34 × 0.28 mm
V = 1218.3 (3) Å3
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.100
Radiation source: fine-focus sealed tubeθmax = 71.9°, θmin = 4.1°
Graphite monochromatorh = 1213
ω/2θ scansk = 013
5192 measured reflectionsl = 1414
4789 independent reflections3 standard reflections every 200 reflections
1438 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.196H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0694P)2]
where P = (Fo2 + 2Fc2)/3
4789 reflections(Δ/σ)max < 0.001
319 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C28H28N6Oγ = 78.32 (1)°
Mr = 464.56V = 1218.3 (3) Å3
Triclinic, P1Z = 2
a = 10.671 (2) ÅCu Kα radiation
b = 10.974 (1) ŵ = 0.64 mm1
c = 11.826 (2) ÅT = 293 K
α = 82.82 (1)°0.48 × 0.34 × 0.28 mm
β = 64.04 (1)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.100
5192 measured reflections3 standard reflections every 200 reflections
4789 independent reflections intensity decay: none
1438 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.196H-atom parameters constrained
S = 0.90Δρmax = 0.22 e Å3
4789 reflectionsΔρmin = 0.26 e Å3
319 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1258 (4)0.3095 (4)0.3983 (4)0.0395 (11)
C20.0682 (5)0.2280 (5)0.3085 (5)0.0377 (13)
C30.0578 (5)0.1435 (5)0.2921 (5)0.0471 (15)
H30.09500.08620.22910.057*
C40.1256 (5)0.1444 (5)0.3667 (5)0.0396 (14)
C50.1185 (5)0.2460 (5)0.5528 (5)0.0476 (15)
N60.0516 (4)0.3237 (4)0.6466 (4)0.0461 (12)
C70.0733 (5)0.3979 (5)0.6606 (5)0.0393 (14)
C80.1323 (5)0.3958 (5)0.5763 (5)0.0413 (14)
C90.0623 (5)0.3109 (5)0.4767 (5)0.0389 (13)
C100.0656 (5)0.2302 (5)0.4630 (4)0.0353 (13)
N110.2410 (4)0.1791 (4)0.5484 (4)0.0754 (18)
H11A0.26980.18880.60370.091*
H11B0.29050.12670.49030.091*
C120.2571 (6)0.4760 (5)0.5797 (5)0.0441 (14)
N130.3585 (5)0.5369 (4)0.5805 (4)0.0650 (16)
N140.1300 (4)0.4681 (4)0.7612 (4)0.0453 (12)
C150.0572 (5)0.4688 (5)0.8414 (5)0.0502 (15)
H15A0.03500.49290.79290.060*
H15B0.04580.38750.88190.060*
C160.1536 (6)0.5640 (6)0.9369 (5)0.0670 (19)
H16A0.15330.53881.01840.080*
H16B0.12310.64440.91110.080*
C170.2976 (6)0.5709 (6)0.9436 (6)0.077 (2)
H17A0.35280.65320.96640.093*
H17B0.34720.50981.00490.093*
C180.2713 (5)0.5431 (5)0.8119 (5)0.0544 (16)
H18A0.34110.49690.81450.065*
H18B0.27440.61940.76140.065*
C190.1433 (5)0.2290 (5)0.2281 (5)0.0403 (13)
C200.2803 (5)0.2950 (5)0.2640 (5)0.0487 (15)
H200.32460.33760.33840.058*
C210.3494 (6)0.2968 (5)0.1899 (5)0.0550 (16)
H210.44080.34080.21490.066*
C220.2866 (6)0.2346 (5)0.0782 (5)0.0481 (15)
C230.1529 (6)0.1696 (5)0.0417 (5)0.0536 (16)
H230.10890.12750.03300.064*
C240.0831 (5)0.1669 (5)0.1174 (5)0.0515 (16)
H240.00770.12160.09250.062*
O250.3679 (4)0.2459 (4)0.0125 (4)0.0654 (12)
C260.3065 (6)0.1823 (6)0.1023 (5)0.084 (2)
H26A0.21860.20930.15720.126*
H26B0.36980.20050.14240.126*
H26C0.29000.09420.08480.126*
C270.2579 (5)0.0528 (5)0.3403 (4)0.0368 (13)
C280.2544 (5)0.0629 (5)0.4007 (5)0.0473 (15)
H280.16810.08250.46010.057*
C290.3749 (5)0.1511 (5)0.3763 (5)0.0464 (15)
H290.36780.22890.41770.056*
C300.5056 (5)0.1246 (5)0.2910 (5)0.0381 (13)
C310.5092 (5)0.0098 (5)0.2276 (6)0.0667 (19)
H310.59500.00940.16670.080*
C320.3872 (5)0.0773 (5)0.2532 (6)0.0649 (19)
H320.39330.15430.21000.078*
N330.6291 (4)0.2099 (4)0.2697 (4)0.0451 (12)
C340.7566 (5)0.1850 (5)0.1593 (5)0.072 (2)
H34A0.74210.18450.08470.108*
H34B0.83470.24870.15510.108*
H34C0.77680.10540.16580.108*
C350.6193 (6)0.3416 (5)0.2978 (5)0.0638 (18)
H35A0.55670.35360.38480.096*
H35B0.71140.38850.28160.096*
H35C0.58350.36940.24570.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.035 (2)0.038 (3)0.040 (3)0.001 (2)0.015 (2)0.003 (2)
C20.030 (3)0.040 (3)0.038 (3)0.002 (3)0.012 (2)0.006 (3)
C30.041 (3)0.050 (4)0.051 (4)0.005 (3)0.021 (3)0.019 (3)
C40.033 (3)0.037 (3)0.045 (3)0.003 (3)0.014 (3)0.013 (3)
C50.040 (3)0.044 (4)0.066 (4)0.001 (3)0.030 (3)0.011 (3)
N60.043 (3)0.048 (3)0.052 (3)0.005 (2)0.026 (2)0.016 (2)
C70.036 (3)0.033 (3)0.047 (3)0.005 (3)0.016 (3)0.002 (3)
C80.033 (3)0.038 (3)0.046 (3)0.009 (3)0.014 (3)0.011 (3)
C90.032 (3)0.042 (4)0.036 (3)0.006 (3)0.010 (2)0.002 (3)
C100.031 (3)0.035 (3)0.039 (3)0.002 (2)0.016 (2)0.005 (3)
N110.057 (3)0.091 (4)0.094 (4)0.033 (3)0.052 (3)0.058 (3)
C120.046 (3)0.045 (4)0.038 (3)0.002 (3)0.015 (3)0.011 (3)
N130.050 (3)0.079 (4)0.065 (3)0.022 (3)0.032 (3)0.025 (3)
N140.041 (3)0.051 (3)0.048 (3)0.007 (2)0.024 (2)0.019 (2)
C150.052 (3)0.044 (4)0.054 (4)0.004 (3)0.025 (3)0.013 (3)
C160.072 (4)0.066 (5)0.067 (4)0.008 (4)0.030 (4)0.023 (4)
C170.060 (4)0.095 (5)0.066 (4)0.022 (4)0.025 (3)0.025 (4)
C180.054 (3)0.055 (4)0.046 (4)0.006 (3)0.017 (3)0.013 (3)
C190.042 (3)0.035 (3)0.037 (3)0.007 (3)0.011 (3)0.000 (3)
C200.044 (3)0.060 (4)0.044 (3)0.006 (3)0.023 (3)0.012 (3)
C210.050 (4)0.062 (4)0.057 (4)0.007 (3)0.029 (3)0.018 (3)
C220.055 (4)0.048 (4)0.049 (4)0.010 (3)0.030 (3)0.004 (3)
C230.060 (4)0.061 (4)0.044 (3)0.008 (3)0.024 (3)0.012 (3)
C240.038 (3)0.057 (4)0.054 (4)0.006 (3)0.015 (3)0.017 (3)
O250.071 (3)0.082 (3)0.058 (3)0.008 (2)0.041 (2)0.009 (2)
C260.088 (5)0.113 (6)0.067 (5)0.018 (5)0.042 (4)0.023 (4)
C270.032 (3)0.039 (3)0.036 (3)0.007 (3)0.010 (2)0.005 (3)
C280.030 (3)0.048 (4)0.050 (4)0.006 (3)0.004 (3)0.001 (3)
C290.034 (3)0.043 (3)0.052 (3)0.004 (3)0.015 (3)0.005 (3)
C300.030 (3)0.036 (3)0.046 (3)0.003 (3)0.014 (3)0.009 (3)
C310.033 (3)0.047 (4)0.086 (5)0.004 (3)0.002 (3)0.008 (4)
C320.039 (3)0.034 (4)0.092 (5)0.005 (3)0.004 (3)0.009 (3)
N330.031 (2)0.045 (3)0.051 (3)0.003 (2)0.013 (2)0.004 (2)
C340.046 (4)0.066 (4)0.077 (5)0.013 (3)0.009 (3)0.007 (4)
C350.058 (4)0.048 (4)0.085 (5)0.004 (3)0.034 (4)0.007 (3)
Geometric parameters (Å, º) top
N1—C21.322 (5)C19—C201.395 (6)
N1—C91.370 (6)C20—C211.367 (6)
C2—C31.420 (6)C20—H200.93
C2—C191.486 (6)C21—C221.387 (7)
C3—C41.366 (6)C21—H210.93
C3—H30.93C22—C231.363 (6)
C4—C101.407 (6)C22—O251.376 (6)
C4—C271.490 (6)C23—C241.387 (7)
C5—N61.329 (6)C23—H230.93
C5—N111.346 (6)C24—H240.93
C5—C101.445 (7)O25—C261.427 (6)
N6—C71.367 (6)C26—H26A0.96
C7—N141.336 (6)C26—H26B0.96
C7—C81.399 (6)C26—H26C0.96
C8—C121.426 (7)C27—C321.369 (6)
C8—C91.427 (6)C27—C281.376 (6)
C9—C101.423 (6)C28—C291.383 (6)
N11—H11A0.86C28—H280.93
N11—H11B0.86C29—C301.380 (6)
C12—N131.148 (6)C29—H290.93
N14—C181.463 (6)C30—C311.382 (6)
N14—C151.466 (6)C30—N331.395 (5)
C15—C161.506 (6)C31—C321.387 (6)
C15—H15A0.97C31—H310.93
C15—H15B0.97C32—H320.93
C16—C171.490 (7)N33—C351.456 (6)
C16—H16A0.97N33—C341.461 (6)
C16—H16B0.97C34—H34A0.96
C17—C181.517 (7)C34—H34B0.96
C17—H17A0.97C34—H34C0.96
C17—H17B0.97C35—H35A0.96
C18—H18A0.97C35—H35B0.96
C18—H18B0.97C35—H35C0.96
C19—C241.378 (6)
C2—N1—C9118.8 (4)C24—C19—C2122.7 (5)
N1—C2—C3121.1 (5)C20—C19—C2119.7 (5)
N1—C2—C19116.5 (4)C21—C20—C19119.9 (5)
C3—C2—C19122.4 (5)C21—C20—H20120.0
C4—C3—C2121.5 (5)C19—C20—H20120.0
C4—C3—H3119.2C20—C21—C22121.7 (5)
C2—C3—H3119.2C20—C21—H21119.2
C3—C4—C10118.1 (4)C22—C21—H21119.2
C3—C4—C27117.1 (4)C23—C22—O25125.5 (5)
C10—C4—C27124.8 (5)C23—C22—C21119.2 (5)
N6—C5—N11114.5 (5)O25—C22—C21115.3 (5)
N6—C5—C10124.0 (5)C22—C23—C24119.2 (5)
N11—C5—C10121.5 (5)C22—C23—H23120.4
C5—N6—C7120.2 (5)C24—C23—H23120.4
N14—C7—N6113.3 (5)C19—C24—C23122.5 (5)
N14—C7—C8125.4 (5)C19—C24—H24118.8
N6—C7—C8121.3 (5)C23—C24—H24118.8
C7—C8—C12124.6 (5)C22—O25—C26116.6 (4)
C7—C8—C9118.7 (5)O25—C26—H26A109.5
C12—C8—C9116.7 (5)O25—C26—H26B109.5
N1—C9—C10122.5 (5)H26A—C26—H26B109.5
N1—C9—C8116.8 (4)O25—C26—H26C109.5
C10—C9—C8120.7 (5)H26A—C26—H26C109.5
C4—C10—C9117.9 (5)H26B—C26—H26C109.5
C4—C10—C5127.2 (4)C32—C27—C28116.8 (5)
C9—C10—C5114.9 (5)C32—C27—C4122.2 (5)
C5—N11—H11A120.0C28—C27—C4120.9 (5)
C5—N11—H11B120.0C27—C28—C29122.3 (5)
H11A—N11—H11B120.0C27—C28—H28118.8
N13—C12—C8177.3 (6)C29—C28—H28118.8
C7—N14—C18126.4 (5)C30—C29—C28120.6 (5)
C7—N14—C15121.7 (4)C30—C29—H29119.7
C18—N14—C15111.7 (4)C28—C29—H29119.7
N14—C15—C16103.7 (4)C29—C30—C31117.2 (5)
N14—C15—H15A111.0C29—C30—N33121.6 (5)
C16—C15—H15A111.0C31—C30—N33121.2 (5)
N14—C15—H15B111.0C30—C31—C32121.2 (5)
C16—C15—H15B111.0C30—C31—H31119.4
H15A—C15—H15B109.0C32—C31—H31119.4
C17—C16—C15106.4 (5)C27—C32—C31121.7 (5)
C17—C16—H16A110.4C27—C32—H32119.1
C15—C16—H16A110.4C31—C32—H32119.1
C17—C16—H16B110.4C30—N33—C35118.7 (4)
C15—C16—H16B110.4C30—N33—C34116.9 (4)
H16A—C16—H16B108.6C35—N33—C34114.2 (4)
C16—C17—C18104.4 (5)N33—C34—H34A109.5
C16—C17—H17A110.9N33—C34—H34B109.5
C18—C17—H17A110.9H34A—C34—H34B109.5
C16—C17—H17B110.9N33—C34—H34C109.5
C18—C17—H17B110.9H34A—C34—H34C109.5
H17A—C17—H17B108.9H34B—C34—H34C109.5
N14—C18—C17104.3 (4)N33—C35—H35A109.5
N14—C18—H18A110.9N33—C35—H35B109.5
C17—C18—H18A110.9H35A—C35—H35B109.5
N14—C18—H18B110.9N33—C35—H35C109.5
C17—C18—H18B110.9H35A—C35—H35C109.5
H18A—C18—H18B108.9H35B—C35—H35C109.5
C24—C19—C20117.6 (5)
C9—N1—C2—C30.5 (7)C15—C16—C17—C1831.4 (6)
C9—N1—C2—C19178.8 (5)C7—N14—C18—C17163.6 (5)
N1—C2—C3—C41.1 (8)C15—N14—C18—C1711.3 (6)
C19—C2—C3—C4179.7 (5)C16—C17—C18—N1425.9 (6)
C2—C3—C4—C101.3 (8)N1—C2—C19—C24167.4 (5)
C2—C3—C4—C27179.3 (5)C3—C2—C19—C2413.4 (8)
N11—C5—N6—C7179.3 (5)N1—C2—C19—C2012.5 (7)
C10—C5—N6—C72.0 (8)C3—C2—C19—C20166.7 (5)
C5—N6—C7—N14178.0 (5)C24—C19—C20—C210.3 (8)
C5—N6—C7—C81.1 (8)C2—C19—C20—C21179.6 (5)
N14—C7—C8—C125.2 (9)C19—C20—C21—C220.2 (9)
N6—C7—C8—C12175.7 (5)C20—C21—C22—C230.3 (9)
N14—C7—C8—C9176.8 (5)C20—C21—C22—O25179.2 (5)
N6—C7—C8—C92.3 (8)O25—C22—C23—C24179.6 (5)
C2—N1—C9—C101.8 (7)C21—C22—C23—C240.2 (9)
C2—N1—C9—C8176.7 (5)C20—C19—C24—C230.8 (8)
C7—C8—C9—N1178.3 (5)C2—C19—C24—C23179.1 (5)
C12—C8—C9—N13.6 (7)C22—C23—C24—C190.8 (9)
C7—C8—C9—C100.3 (8)C23—C22—O25—C260.9 (8)
C12—C8—C9—C10177.9 (5)C21—C22—O25—C26179.6 (5)
C3—C4—C10—C90.0 (7)C3—C4—C27—C3286.5 (7)
C27—C4—C10—C9179.4 (5)C10—C4—C27—C3294.1 (7)
C3—C4—C10—C5179.3 (6)C3—C4—C27—C2891.5 (6)
C27—C4—C10—C50.0 (9)C10—C4—C27—C2887.8 (7)
N1—C9—C10—C41.6 (8)C32—C27—C28—C290.3 (8)
C8—C9—C10—C4176.9 (5)C4—C27—C28—C29178.5 (5)
N1—C9—C10—C5179.0 (5)C27—C28—C29—C301.6 (8)
C8—C9—C10—C52.5 (7)C28—C29—C30—C313.2 (8)
N6—C5—C10—C4175.6 (6)C28—C29—C30—N33176.8 (5)
N11—C5—C10—C43.0 (9)C29—C30—C31—C323.0 (9)
N6—C5—C10—C93.8 (8)N33—C30—C31—C32176.9 (5)
N11—C5—C10—C9177.6 (5)C28—C27—C32—C310.5 (9)
N6—C7—N14—C18170.6 (5)C4—C27—C32—C31178.7 (6)
C8—C7—N14—C188.5 (9)C30—C31—C32—C271.2 (10)
N6—C7—N14—C153.8 (7)C29—C30—N33—C3523.6 (7)
C8—C7—N14—C15177.0 (5)C31—C30—N33—C35156.5 (5)
C7—N14—C15—C16177.1 (5)C29—C30—N33—C34166.9 (5)
C18—N14—C15—C167.8 (6)C31—C30—N33—C3413.2 (7)
N14—C15—C16—C1724.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···N33i0.862.253.106 (6)173
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC28H28N6O
Mr464.56
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.671 (2), 10.974 (1), 11.826 (2)
α, β, γ (°)82.82 (1), 64.04 (1), 78.32 (1)
V3)1218.3 (3)
Z2
Radiation typeCu Kα
µ (mm1)0.64
Crystal size (mm)0.48 × 0.34 × 0.28
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5192, 4789, 1438
Rint0.100
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.196, 0.90
No. of reflections4789
No. of parameters319
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.26

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997) and PLATON (Spek, 1990), SHELXL97 and PARST (Nardelli, 1995).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds