Download citation
Download citation
link to html
The title mol­ecule, C9H11N3OS, exhibits a trans conformation with respect to the phenyl ring and the thio­semicarbazone moiety. The dihedral angle between the thio­semicarbazone moiety and the phenyl ring is 4.68 (5)°. In the solid state, inversion-related mol­ecules exist as centrosymmetric N—H...S hydrogen-bonded dimers. Symmetry-related dimers are interlinked by N—H...S and N—H...O intermolecular hydrogen bonds, forming two-dimensional molecular networks parallel to the ab plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680201961X/ci6177sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680201961X/ci6177Isup2.hkl
Contains datablock I

CCDC reference: 202316

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.044
  • wR factor = 0.126
  • Data-to-parameter ratio = 19.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Thiosemicarbazones are derivatives of carbonyl compounds which exhibit a wide range of biological activities (Shanmuga Sundara Raj et al., 2000). There is a considerable interest in the chemistry of Schiff base compounds containing N– and S-donors and their metal complexes. This is due to their non-linear optical properties and chelating ability with transition metal ions (Ali & Tarafdar, 1977; Ali & Bose, 1984; Tian et al., 1996). Antibacterial, antiviral and antitumour activities have been observed in N– and S-donor ligands, such as substituted thiosemicarbazides and thiosemicarbazones (Nandi et al., 1984; French & Blanz, 1965, 1966; William, 1972). In this paper, we report the structure of 2-methoxybenzaldehyde thiosemicarbazone, (I).

The molecular structure of (I), with the atom-numbering scheme, is shown in Fig. 1. The bond distances agree well with the values reported for similar structures (Moers et al., 1999; Nandi et al., 1984; Shanmuga Sundara Raj et al., 2000). The C—S bond [1.688 (2) Å] has a length intermediate between a single and double bond. The sum of the valence angles around atoms N1 and N2 indicate that these atoms are sp2 hybridized. The exocyclic angles around atom C4 atom show considerable asymmetry, with the O1—C4—C5 angle [123.9 (2)°] being wider than O1—C4—C3 [115.9 (1)°], as observed in a related structure (Fun et al., 1996). This may be due to the steric repulsion between the methyl group and the phenyl ring. The C9—O1—C4—C5 [−14.1 (3)°] and C9—O1—C4—C3 [166.4 (2)°] torsion angles indicate that the methoxy group is twisted away from the benzene plane. The S1—C1—N2—N3 [−177.6 (1)°] and N3—C2—C3—C4 [−178.1 (2)°] torsion angles show a trans conformation between the thiosemicarbazone moiety and the phenyl ring. The trans conformation adopted by the side chain is evident from the values of the C1—N2—N3—C2 [172.8 (2)°], N2—N3—C2—C3 [−178.6 (1)°], N3—C2—C3—C4 [−178.1 (2)°] and C2—C3—C4—C5 [−178.4 (2)°] torsion angles. The thiosemicarbazone moiety forms a dihedral angle of 4.68 (5)° with the phenyl ring.

In the crystal, the molecules at (x, y, z) and (-x, 1 − y, 1 − z) are linked by N—H···S hydrogen bonds involving the NH group, forming centrosymmetric dimeric units. Symmetry-related dimers are interlinked by N—H···S and N—H···O intermolecular hydrogen bonds involving the NH2 group (Table 2), forming two-dimensional molecular networks parallel to the ab plane (Fig. 2). The N···S distances of 3.376 (1) and 3.398 (1) Å are close to the mean N···S distance reported for N—H···S hydrogen bonds by Srinivasan & Chacko (1967).

Experimental top

2-Methoxybenzaldehyde and thiosemicarbazide, taken almost in equivalent quantities, with a few drops of HCl, formed 2-methoxybenzaldehyde thiosemicarbazone. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation from an acetone solution at room temperature.

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C and N atoms, with C—H distances of 0.93 or 0.96 Å and N—H distances of 0.86 Å.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek,1990); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. The packing of the title molecules, viewed down the b axis.
2-methoxybenzaldehyde thiosemicarbazone top
Crystal data top
C9H11N3OSF(000) = 880
Mr = 209.27Dx = 1.347 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6556 reflections
a = 13.5826 (2) Åθ = 2.8–28.3°
b = 10.6063 (2) ŵ = 0.28 mm1
c = 14.3260 (3) ÅT = 293 K
V = 2063.82 (7) Å3Block, colourless
Z = 80.48 × 0.34 × 0.20 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
1742 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.079
Graphite monochromatorθmax = 28.3°, θmin = 2.8°
ω scansh = 1817
13626 measured reflectionsk = 1410
2547 independent reflectionsl = 1913
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0674P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
2547 reflectionsΔρmax = 0.32 e Å3
128 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0093 (15)
Crystal data top
C9H11N3OSV = 2063.82 (7) Å3
Mr = 209.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.5826 (2) ŵ = 0.28 mm1
b = 10.6063 (2) ÅT = 293 K
c = 14.3260 (3) Å0.48 × 0.34 × 0.20 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
1742 reflections with I > 2σ(I)
13626 measured reflectionsRint = 0.079
2547 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 0.98Δρmax = 0.32 e Å3
2547 reflectionsΔρmin = 0.34 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.14359 (3)0.45821 (4)0.44357 (4)0.0513 (2)
O10.13883 (8)0.92320 (12)0.70048 (9)0.0457 (4)
N10.22790 (10)0.68344 (12)0.44969 (11)0.0408 (4)
H1A0.23060.76050.46820.049*
H1B0.27340.65370.41420.049*
N20.08486 (10)0.66244 (12)0.53117 (10)0.0369 (4)
H20.03710.61710.55180.044*
N30.09090 (10)0.78810 (12)0.55478 (10)0.0340 (3)
C10.15382 (10)0.61077 (15)0.47576 (12)0.0326 (4)
C20.01710 (12)0.83237 (15)0.59910 (12)0.0331 (4)
H2A0.03500.77920.61420.040*
C30.01285 (12)0.96481 (14)0.62651 (11)0.0326 (4)
C40.06784 (12)1.01062 (15)0.67780 (12)0.0363 (4)
C50.07296 (16)1.13717 (18)0.70187 (14)0.0499 (5)
H50.12621.16710.73620.060*
C60.00098 (18)1.21846 (17)0.67485 (15)0.0552 (6)
H60.00311.30340.69050.066*
C70.08079 (16)1.17500 (18)0.62491 (15)0.0515 (5)
H70.13061.23040.60750.062*
C80.08671 (14)1.04948 (16)0.60076 (13)0.0397 (4)
H80.14061.02080.56690.048*
C90.21108 (16)0.9580 (2)0.76991 (16)0.0615 (6)
H9A0.25590.88920.77930.092*
H9B0.24691.03070.74890.092*
H9C0.17850.97710.82760.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0425 (3)0.0245 (3)0.0868 (5)0.00013 (17)0.0173 (2)0.0103 (2)
O10.0379 (7)0.0513 (8)0.0480 (8)0.0038 (5)0.0040 (6)0.0136 (6)
N10.0343 (7)0.0288 (7)0.0594 (11)0.0021 (6)0.0112 (7)0.0081 (6)
N20.0365 (7)0.0242 (7)0.0499 (10)0.0006 (5)0.0101 (6)0.0031 (6)
N30.0369 (7)0.0258 (7)0.0395 (9)0.0025 (6)0.0009 (6)0.0036 (6)
C10.0300 (8)0.0263 (8)0.0416 (10)0.0038 (6)0.0006 (7)0.0001 (7)
C20.0351 (8)0.0320 (9)0.0322 (9)0.0023 (6)0.0017 (7)0.0018 (7)
C30.0387 (9)0.0301 (8)0.0291 (9)0.0046 (6)0.0077 (7)0.0035 (6)
C40.0420 (9)0.0371 (9)0.0298 (9)0.0079 (7)0.0087 (7)0.0081 (7)
C50.0646 (13)0.0437 (11)0.0415 (12)0.0149 (9)0.0080 (9)0.0146 (8)
C60.0865 (16)0.0318 (10)0.0472 (12)0.0051 (10)0.0144 (11)0.0116 (9)
C70.0721 (14)0.0350 (11)0.0474 (13)0.0104 (9)0.0104 (10)0.0043 (9)
C80.0475 (10)0.0359 (10)0.0358 (11)0.0002 (7)0.0049 (8)0.0023 (7)
C90.0540 (13)0.0833 (16)0.0472 (14)0.0114 (11)0.0128 (10)0.0114 (11)
Geometric parameters (Å, º) top
S1—C11.688 (2)C3—C41.406 (2)
O1—C41.377 (2)C4—C51.387 (2)
O1—C91.445 (2)C5—C61.379 (3)
N1—C11.321 (2)C5—H50.93
N1—H1A0.86C6—C71.378 (3)
N1—H1B0.86C6—H60.93
N2—C11.345 (2)C7—C81.378 (2)
N2—N31.377 (2)C7—H70.93
N2—H20.86C8—H80.93
N3—C21.276 (2)C9—H9A0.96
C2—C31.460 (2)C9—H9B0.96
C2—H2A0.93C9—H9C0.96
C3—C81.396 (2)
C4—O1—C9117.79 (14)C5—C4—C3120.21 (17)
C1—N1—H1A120.0C6—C5—C4119.91 (19)
C1—N1—H1B120.0C6—C5—H5120.0
H1A—N1—H1B120.0C4—C5—H5120.0
C1—N2—N3119.86 (13)C5—C6—C7120.62 (17)
C1—N2—H2120.1C5—C6—H6119.7
N3—N2—H2120.1C7—C6—H6119.7
C2—N3—N2115.56 (14)C8—C7—C6119.96 (19)
N1—C1—N2117.36 (14)C8—C7—H7120.0
N1—C1—S1122.99 (12)C6—C7—H7120.0
N2—C1—S1119.64 (12)C7—C8—C3120.88 (18)
N3—C2—C3121.26 (15)C7—C8—H8119.6
N3—C2—H2A119.4C3—C8—H8119.6
C3—C2—H2A119.4O1—C9—H9A109.5
C8—C3—C4118.42 (15)O1—C9—H9B109.5
C8—C3—C2121.30 (15)H9A—C9—H9B109.5
C4—C3—C2120.26 (15)O1—C9—H9C109.5
O1—C4—C5123.9 (2)H9A—C9—H9C109.5
O1—C4—C3115.9 (1)H9B—C9—H9C109.5
C1—N2—N3—C2172.8 (2)C8—C3—C4—C50.1 (2)
N3—N2—C1—N13.1 (2)C2—C3—C4—C5178.4 (2)
N3—N2—C1—S1177.6 (1)O1—C4—C5—C6179.0 (2)
N2—N3—C2—C3178.6 (1)C3—C4—C5—C60.5 (3)
N3—C2—C3—C83.6 (2)C4—C5—C6—C70.7 (3)
N3—C2—C3—C4178.1 (2)C5—C6—C7—C80.6 (3)
C9—O1—C4—C514.1 (3)C6—C7—C8—C30.2 (3)
C9—O1—C4—C3166.4 (2)C4—C3—C8—C70.0 (3)
C8—C3—C4—O1179.4 (2)C2—C3—C8—C7178.31 (16)
C2—C3—C4—O11.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O10.932.422.7427 (19)100
N1—H1A···N30.862.292.6385 (19)105
N1—H1B···O1i0.862.193.0306 (18)166
N1—H1A···S1ii0.862.733.3982 (14)136
N2—H2···S1iii0.862.583.3759 (14)154
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H11N3OS
Mr209.27
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)13.5826 (2), 10.6063 (2), 14.3260 (3)
V3)2063.82 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.48 × 0.34 × 0.20
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13626, 2547, 1742
Rint0.079
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.126, 0.98
No. of reflections2547
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.34

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and PLATON (Spek,1990), SHELXL97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
S1—C11.688 (2)N2—C11.345 (2)
O1—C41.377 (2)N2—N31.377 (2)
O1—C91.445 (2)N3—C21.276 (2)
N1—C11.321 (2)C2—C31.460 (2)
O1—C4—C5123.9 (2)O1—C4—C3115.9 (1)
C1—N2—N3—C2172.8 (2)C9—O1—C4—C514.1 (3)
N3—N2—C1—S1177.6 (1)C9—O1—C4—C3166.4 (2)
N2—N3—C2—C3178.6 (1)C2—C3—C4—C5178.4 (2)
N3—C2—C3—C4178.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O10.932.422.7427 (19)100
N1—H1A···N30.862.292.6385 (19)105
N1—H1B···O1i0.862.193.0306 (18)166
N1—H1A···S1ii0.862.733.3982 (14)136
N2—H2···S1iii0.862.583.3759 (14)154
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z; (iii) x, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds