Download citation
Download citation
link to html
In solution, the complex [Ru(bdt)(cym)] and its dimer [Ru2(bdt)2(cym)2] [bdt is benzene-1,2-di­thiol­ate (C6H4S2) and cym is p-cymene (C10H14)] are in equilibrium in a ratio which depends on temperature (ca 1:1 at 298 K). In the solid state and in solution at low temperature (213 K), only the dimer is observed. In the crystal structure of [Ru2(bdt)2(cym)2], each Ru atom is bonded to three S atoms from two bdt ligands apart from its coordination to the benzene ring of the p-cymene ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802005998/ci6110sup1.cif
Contains datablocks rubdt, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802005998/ci6110Isup2.hkl
Contains datablock I

CCDC reference: 185744

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.041
  • wR factor = 0.105
  • Data-to-parameter ratio = 16.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

This work is part of a project dealing with the synthesis and reactivity of binuclear complexes containing bridging benzene-1,2-dithiolate ligands (Cabeza et al., 1998, 1999). The nuclearity of the [Ru(bdt)(arene)]x compounds (bdt is benzene-1,2-dithiolate) is strongly dependent on temperature and the nature of the substituents of the arene ring, i.e. [Ru(bdt)(C6Me6)] is a monomer in the solid state and in solution at any temperature, while [Ru(bdt)(C6H6)] and [Ru(bdt)(cym)] exist in solution in equilibrium with their dimers (Mashima et al., 1997). With the aim of studying its reactivity with other metal complexes, [Ru(bdt)(cym)]x (cym is p-cymene) was prepared and it was observed that, first, in solution, at 298 K, a ca 1:1 equilibrium mixture of the monomer and the dimer exists (see Scheme below), secondly, in solution, but at temperatures above 298 K, the monomer predominates (a 4:1 ratio was observed at 353 K), while at lower temperatures, the dimer is in higher ratio, e.g. at 213 K, only the dimer was noticed, and thirdly, only the dimer exists in the solid state. We report here the structural details of the dimer [Ru2(bdt)2(cym)2], (I).

The dimer crystallizes in P1. The asymmetric unit consists of one-half of the dimer, i.e. a monomeric unit, [Ru(bdt)(cym)], with the other half being generated by a centre of symmetry at (0,1/2,1/2). The monomeric units are linked through two Ru—S bonds, Ru1—S1i [2.364 (2) Å; symmetry code: -x, 1 - y, 1 - z] and Ru1—S2i [2.386 (2) Å], i.e. each Ru atom is bonded to three S atoms (S1, S1i and S2i) from two bdt ligands apart from its coordination to the benzene ring of the p-cymene ligand.

Although other related compounds, such as [Ru2(bdt)2(C5Me5)2] (Ru–Ru) (Hörnig et al., 1994) and [Rh2(bdt)2(C5Me5)2] (Russell et al., 1978), are known, structure details have not been reported.

Experimental top

The title compound was prepared by the method reported in Mashima et al. (1997). The monomer to dimer ratios in solution at different temperatures were estimated by integration of 1H NMR spectra in toluene-d8. The 1H NMR chemical shifts of monomer and dimer have been reported (Mashima et al., 1997). Crystals were obtained at 253 K by slow diffusion of pentane vapour into a solution of the complex in dichloromethane.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CRYSDA (Beurskens et al., 1992); data reduction: REFLEX (García-Granda et al., 1999); program(s) used to solve structure: DIRDIF (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: EUCLID (Spek, 1982); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of [Ru2(bdt)2(cym)2]. Displacement ellipsoids are shown at the 30% probability level. H atoms have been omitted for clarity.
Bis(µ-η2-benzene-1,2-dithiolato-κ3S,S':S')bis[(η6-p- cymene)ruthenium(II)] top
Crystal data top
[Ru2(C10H14)2(C6H4S2)2]Z = 1
Mr = 750.98F(000) = 380
Triclinic, P1Dx = 1.706 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.237 (5) ÅCell parameters from 25 reflections
b = 9.813 (6) Åθ = 10–15°
c = 10.237 (3) ŵ = 1.34 mm1
α = 65.42 (4)°T = 293 K
β = 82.57 (3)°Plate, dark red
γ = 76.34 (6)°0.33 × 0.17 × 0.03 mm
V = 730.8 (7) Å3
Data collection top
Nonius CAD-4
diffractometer
1907 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 26.0°, θmin = 2.2°
ω–2θ scansh = 1010
Absorption correction: part of the refinement model (ΔF)
(SHELXA; Sheldrick, 1997)
k = 1012
Tmin = 0.762, Tmax = 0.957l = 012
3022 measured reflections3 standard reflections every 200 reflections
2855 independent reflections intensity decay: 3.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0492P)2]
where P = (Fo2 + 2Fc2)/3
2855 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Ru2(C10H14)2(C6H4S2)2]γ = 76.34 (6)°
Mr = 750.98V = 730.8 (7) Å3
Triclinic, P1Z = 1
a = 8.237 (5) ÅMo Kα radiation
b = 9.813 (6) ŵ = 1.34 mm1
c = 10.237 (3) ÅT = 293 K
α = 65.42 (4)°0.33 × 0.17 × 0.03 mm
β = 82.57 (3)°
Data collection top
Nonius CAD-4
diffractometer
1907 reflections with I > 2σ(I)
Absorption correction: part of the refinement model (ΔF)
(SHELXA; Sheldrick, 1997)
Rint = 0.036
Tmin = 0.762, Tmax = 0.9573 standard reflections every 200 reflections
3022 measured reflections intensity decay: 3.6%
2855 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.02Δρmax = 0.85 e Å3
2855 reflectionsΔρmin = 0.69 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.08675 (7)0.39535 (6)0.38958 (5)0.02391 (16)
S10.17289 (19)0.53716 (17)0.50139 (15)0.0268 (3)
S20.1395 (2)0.81122 (18)0.38122 (16)0.0351 (4)
C10.0610 (8)0.8274 (7)0.2998 (6)0.0303 (14)
C20.0841 (10)0.9543 (7)0.1756 (7)0.0432 (18)
H20.00741.03080.13360.047 (7)*
C30.2405 (11)0.9673 (9)0.1148 (8)0.059 (2)
H30.25341.05120.03010.047 (7)*
C40.3810 (10)0.8571 (8)0.1773 (8)0.0493 (19)
H40.48740.87080.13860.047 (7)*
C50.3606 (8)0.7277 (8)0.2971 (7)0.0383 (16)
H50.45250.65130.33830.047 (7)*
C60.1993 (8)0.7127 (7)0.3559 (6)0.0281 (13)
C70.2007 (9)0.5887 (8)0.1364 (7)0.0479 (19)
H7A0.28180.52610.15560.084 (10)*
H7B0.19760.65330.03580.084 (10)*
H7C0.23080.65100.19090.084 (10)*
C80.0340 (8)0.4897 (8)0.1781 (6)0.0370 (16)
C90.0118 (8)0.3266 (7)0.2412 (7)0.0360 (15)
H90.10320.28160.25320.047 (7)*
C100.1449 (8)0.2336 (7)0.2852 (6)0.0312 (14)
H100.15440.12800.32850.047 (7)*
C110.2901 (8)0.2954 (7)0.2659 (6)0.0306 (14)
C120.2665 (8)0.4557 (7)0.2059 (6)0.0295 (14)
H120.35780.50050.19490.047 (7)*
C130.1079 (8)0.5519 (7)0.1614 (6)0.0324 (15)
H130.09810.65760.12060.047 (7)*
C140.4597 (8)0.1942 (7)0.3057 (7)0.0338 (15)
H140.44370.08840.35470.032 (17)*
C150.5498 (9)0.2258 (8)0.4069 (7)0.0461 (18)
H15A0.65610.15650.42830.084 (10)*
H15B0.48380.21160.49430.084 (10)*
H15C0.56650.32920.36230.084 (10)*
C160.5650 (9)0.2064 (10)0.1683 (8)0.061 (2)
H16A0.67310.14110.19280.084 (10)*
H16B0.57760.31030.11480.084 (10)*
H16C0.51040.17530.11090.084 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0241 (3)0.0240 (3)0.0240 (2)0.00434 (18)0.00088 (18)0.01013 (19)
S10.0249 (8)0.0311 (8)0.0244 (7)0.0062 (7)0.0013 (6)0.0108 (7)
S20.0324 (9)0.0306 (9)0.0303 (8)0.0008 (7)0.0017 (7)0.0032 (7)
C10.040 (4)0.027 (3)0.028 (3)0.011 (3)0.002 (3)0.012 (3)
C20.062 (5)0.025 (3)0.041 (4)0.014 (3)0.002 (4)0.010 (3)
C30.087 (7)0.041 (4)0.046 (4)0.034 (5)0.031 (5)0.013 (4)
C40.052 (5)0.047 (5)0.055 (5)0.031 (4)0.020 (4)0.021 (4)
C50.035 (4)0.042 (4)0.046 (4)0.015 (3)0.006 (3)0.024 (3)
C60.034 (4)0.031 (3)0.025 (3)0.013 (3)0.000 (3)0.013 (3)
C70.038 (4)0.059 (5)0.041 (4)0.006 (4)0.012 (3)0.020 (4)
C80.038 (4)0.047 (4)0.027 (3)0.002 (3)0.005 (3)0.021 (3)
C90.038 (4)0.039 (4)0.039 (4)0.010 (3)0.001 (3)0.022 (3)
C100.035 (4)0.029 (3)0.036 (3)0.007 (3)0.001 (3)0.019 (3)
C110.032 (4)0.035 (4)0.032 (3)0.007 (3)0.001 (3)0.021 (3)
C120.032 (4)0.034 (3)0.027 (3)0.012 (3)0.003 (3)0.014 (3)
C130.043 (4)0.029 (3)0.022 (3)0.005 (3)0.001 (3)0.009 (3)
C140.029 (4)0.032 (4)0.042 (4)0.004 (3)0.002 (3)0.017 (3)
C150.039 (4)0.053 (4)0.048 (4)0.008 (3)0.009 (3)0.020 (4)
C160.036 (4)0.087 (6)0.061 (5)0.006 (4)0.003 (4)0.040 (5)
Geometric parameters (Å, º) top
Ru1—C102.193 (6)C7—H7A0.96
Ru1—C122.201 (6)C7—H7B0.96
Ru1—C92.202 (6)C7—H7C0.96
Ru1—C132.210 (6)C8—C131.402 (9)
Ru1—C82.233 (6)C8—C91.430 (9)
Ru1—C112.254 (6)C9—C101.398 (9)
Ru1—S1i2.364 (2)C9—H90.93
Ru1—S2i2.386 (2)C10—C111.421 (9)
Ru1—S12.3983 (19)C10—H100.93
S1—C61.786 (6)C11—C121.404 (8)
S1—Ru1i2.364 (2)C11—C141.503 (9)
S2—C11.762 (6)C12—C131.421 (9)
S2—Ru1i2.386 (2)C12—H120.93
C1—C61.386 (9)C13—H130.93
C1—C21.392 (8)C14—C151.515 (9)
C2—C31.366 (10)C14—C161.530 (9)
C2—H20.93C14—H140.98
C3—C41.394 (11)C15—H15A0.96
C3—H30.93C15—H15B0.96
C4—C51.377 (9)C15—H15C0.96
C4—H40.93C16—H16A0.96
C5—C61.401 (9)C16—H16B0.96
C5—H50.93C16—H16C0.96
C7—C81.479 (9)
C10—Ru1—C1266.2 (2)C8—C7—H7B109.5
C10—Ru1—C937.1 (2)H7A—C7—H7B109.5
C12—Ru1—C978.5 (2)C8—C7—H7C109.5
C10—Ru1—C1378.8 (2)H7A—C7—H7C109.5
C12—Ru1—C1337.6 (2)H7B—C7—H7C109.5
C9—Ru1—C1366.5 (2)C13—C8—C9117.2 (6)
C10—Ru1—C867.6 (2)C13—C8—C7121.4 (6)
C12—Ru1—C867.2 (2)C9—C8—C7121.3 (7)
C9—Ru1—C837.6 (2)C13—C8—Ru170.7 (3)
C13—Ru1—C836.8 (2)C9—C8—Ru170.0 (4)
C10—Ru1—C1137.2 (2)C7—C8—Ru1128.6 (4)
C12—Ru1—C1136.7 (2)C10—C9—C8121.1 (6)
C9—Ru1—C1167.2 (2)C10—C9—Ru171.1 (4)
C13—Ru1—C1167.3 (2)C8—C9—Ru172.4 (4)
C8—Ru1—C1180.2 (2)C10—C9—H9119.4
C10—Ru1—S1i126.15 (17)C8—C9—H9119.4
C12—Ru1—S1i148.78 (17)Ru1—C9—H9129.6
C9—Ru1—S1i96.85 (18)C9—C10—C11122.0 (6)
C13—Ru1—S1i112.16 (18)C9—C10—Ru171.8 (3)
C8—Ru1—S1i90.12 (17)C11—C10—Ru173.7 (3)
C11—Ru1—S1i163.21 (16)C9—C10—H10119.0
C10—Ru1—S2i90.39 (17)C11—C10—H10119.0
C12—Ru1—S2i126.29 (17)Ru1—C10—H10127.7
C9—Ru1—S2i111.65 (18)C12—C11—C10116.3 (6)
C13—Ru1—S2i163.45 (16)C12—C11—C14122.1 (6)
C8—Ru1—S2i147.87 (19)C10—C11—C14121.6 (6)
C11—Ru1—S2i96.50 (17)C12—C11—Ru169.6 (3)
S1i—Ru1—S2i84.33 (8)C10—C11—Ru169.1 (3)
C10—Ru1—S1151.04 (17)C14—C11—Ru1132.7 (4)
C12—Ru1—S194.91 (17)C11—C12—C13122.3 (6)
C9—Ru1—S1164.62 (17)C11—C12—Ru173.7 (3)
C13—Ru1—S199.85 (17)C13—C12—Ru171.5 (3)
C8—Ru1—S1127.01 (18)C11—C12—H12118.8
C11—Ru1—S1115.27 (17)C13—C12—H12118.8
S1i—Ru1—S181.51 (7)Ru1—C12—H12128.3
S2i—Ru1—S183.48 (7)C8—C13—C12120.9 (6)
C6—S1—Ru1i103.6 (2)C8—C13—Ru172.5 (3)
C6—S1—Ru1104.32 (19)C12—C13—Ru170.9 (3)
Ru1i—S1—Ru198.49 (7)C8—C13—H13119.6
C1—S2—Ru1i104.1 (2)C12—C13—H13119.6
C6—C1—C2118.2 (6)Ru1—C13—H13129.5
C6—C1—S2121.0 (5)C11—C14—C15114.1 (5)
C2—C1—S2120.9 (5)C11—C14—C16109.0 (5)
C3—C2—C1120.4 (7)C15—C14—C16111.3 (6)
C3—C2—H2119.8C11—C14—H14107.4
C1—C2—H2119.8C15—C14—H14107.4
C2—C3—C4121.3 (7)C16—C14—H14107.4
C2—C3—H3119.4C14—C15—H15A109.5
C4—C3—H3119.4C14—C15—H15B109.5
C5—C4—C3119.3 (7)H15A—C15—H15B109.5
C5—C4—H4120.4C14—C15—H15C109.5
C3—C4—H4120.4H15A—C15—H15C109.5
C4—C5—C6119.0 (7)H15B—C15—H15C109.5
C4—C5—H5120.5C14—C16—H16A109.5
C6—C5—H5120.5C14—C16—H16B109.5
C1—C6—C5121.6 (6)H16A—C16—H16B109.5
C1—C6—S1119.9 (5)C14—C16—H16C109.5
C5—C6—S1118.4 (5)H16A—C16—H16C109.5
C8—C7—H7A109.5H16B—C16—H16C109.5
C10—Ru1—S1—C689.4 (4)S1—Ru1—C10—C9155.8 (3)
C12—Ru1—S1—C642.3 (3)C12—Ru1—C10—C1129.8 (3)
C9—Ru1—S1—C621.5 (7)C9—Ru1—C10—C11132.7 (6)
C13—Ru1—S1—C64.7 (3)C13—Ru1—C10—C1167.1 (4)
C8—Ru1—S1—C622.7 (3)C8—Ru1—C10—C11103.8 (4)
C11—Ru1—S1—C674.2 (3)S1i—Ru1—C10—C11176.5 (3)
S1i—Ru1—S1—C6106.4 (2)S2i—Ru1—C10—C11100.3 (3)
S2i—Ru1—S1—C6168.4 (2)S1—Ru1—C10—C1123.1 (6)
C10—Ru1—S1—Ru1i164.1 (3)C9—C10—C11—C122.7 (8)
C12—Ru1—S1—Ru1i148.76 (17)Ru1—C10—C11—C1252.7 (5)
C9—Ru1—S1—Ru1i84.9 (7)C9—C10—C11—C14176.4 (5)
C13—Ru1—S1—Ru1i111.17 (18)Ru1—C10—C11—C14128.1 (5)
C8—Ru1—S1—Ru1i83.7 (2)C9—C10—C11—Ru155.5 (5)
C11—Ru1—S1—Ru1i179.35 (17)C10—Ru1—C11—C12130.4 (5)
S2i—Ru1—S1—Ru1i85.21 (8)C9—Ru1—C11—C12101.7 (4)
Ru1i—S2—C1—C613.8 (5)C13—Ru1—C11—C1228.8 (4)
Ru1i—S2—C1—C2167.6 (5)C8—Ru1—C11—C1264.8 (4)
C6—C1—C2—C32.7 (10)S1i—Ru1—C11—C12120.6 (5)
S2—C1—C2—C3178.7 (6)S2i—Ru1—C11—C12147.5 (3)
C1—C2—C3—C42.0 (11)S1—Ru1—C11—C1261.7 (4)
C2—C3—C4—C54.5 (12)C12—Ru1—C11—C10130.4 (5)
C3—C4—C5—C62.2 (10)C9—Ru1—C11—C1028.8 (4)
C2—C1—C6—C55.0 (9)C13—Ru1—C11—C10101.7 (4)
S2—C1—C6—C5176.5 (5)C8—Ru1—C11—C1065.7 (4)
C2—C1—C6—S1172.1 (5)S1i—Ru1—C11—C109.9 (8)
S2—C1—C6—S16.4 (7)S2i—Ru1—C11—C1082.0 (4)
C4—C5—C6—C12.5 (9)S1—Ru1—C11—C10167.9 (3)
C4—C5—C6—S1174.6 (5)C10—Ru1—C11—C14114.2 (7)
Ru1i—S1—C6—C123.2 (5)C12—Ru1—C11—C14115.3 (7)
Ru1—S1—C6—C179.4 (5)C9—Ru1—C11—C14143.0 (7)
Ru1i—S1—C6—C5159.6 (4)C13—Ru1—C11—C14144.1 (7)
Ru1—S1—C6—C597.7 (5)C8—Ru1—C11—C14179.9 (6)
C10—Ru1—C8—C13101.6 (4)S1i—Ru1—C11—C14124.1 (6)
C12—Ru1—C8—C1329.1 (3)S2i—Ru1—C11—C1432.2 (6)
C9—Ru1—C8—C13130.1 (5)S1—Ru1—C11—C1453.6 (6)
C11—Ru1—C8—C1365.0 (4)C10—C11—C12—C132.4 (8)
S1i—Ru1—C8—C13128.8 (3)C14—C11—C12—C13176.7 (5)
S2i—Ru1—C8—C13151.7 (3)Ru1—C11—C12—C1354.8 (5)
S1—Ru1—C8—C1349.4 (4)C10—C11—C12—Ru152.5 (5)
C10—Ru1—C8—C928.5 (4)C14—C11—C12—Ru1128.4 (5)
C12—Ru1—C8—C9101.0 (4)C10—Ru1—C12—C1130.2 (4)
C13—Ru1—C8—C9130.1 (5)C9—Ru1—C12—C1167.1 (4)
C11—Ru1—C8—C965.1 (4)C13—Ru1—C12—C11133.3 (5)
S1i—Ru1—C8—C9101.1 (4)C8—Ru1—C12—C11104.8 (4)
S2i—Ru1—C8—C921.6 (5)S1i—Ru1—C12—C11151.3 (3)
S1—Ru1—C8—C9179.5 (3)S2i—Ru1—C12—C1141.5 (4)
C10—Ru1—C8—C7143.1 (7)S1—Ru1—C12—C11127.0 (3)
C12—Ru1—C8—C7144.3 (7)C10—Ru1—C12—C13103.0 (4)
C9—Ru1—C8—C7114.7 (8)C9—Ru1—C12—C1366.2 (4)
C13—Ru1—C8—C7115.3 (8)C8—Ru1—C12—C1328.5 (4)
C11—Ru1—C8—C7179.8 (7)C11—Ru1—C12—C13133.3 (5)
S1i—Ru1—C8—C713.6 (6)S1i—Ru1—C12—C1318.1 (5)
S2i—Ru1—C8—C793.1 (7)S2i—Ru1—C12—C13174.7 (3)
S1—Ru1—C8—C765.9 (7)S1—Ru1—C12—C1399.8 (3)
C13—C8—C9—C100.4 (9)C9—C8—C13—C120.1 (8)
C7—C8—C9—C10177.7 (6)C7—C8—C13—C12178.0 (5)
Ru1—C8—C9—C1053.9 (5)Ru1—C8—C13—C1254.0 (5)
C13—C8—C9—Ru154.3 (5)C9—C8—C13—Ru154.0 (5)
C7—C8—C9—Ru1123.7 (6)C7—C8—C13—Ru1124.1 (6)
C12—Ru1—C9—C1065.6 (4)C11—C12—C13—C81.1 (9)
C13—Ru1—C9—C10103.0 (4)Ru1—C12—C13—C854.7 (5)
C8—Ru1—C9—C10133.0 (6)C11—C12—C13—Ru155.8 (5)
C11—Ru1—C9—C1028.9 (4)C10—Ru1—C13—C867.4 (4)
S1i—Ru1—C9—C10145.7 (3)C12—Ru1—C13—C8132.7 (5)
S2i—Ru1—C9—C1059.1 (4)C9—Ru1—C13—C830.6 (4)
S1—Ru1—C9—C10131.4 (6)C11—Ru1—C13—C8104.6 (4)
C10—Ru1—C9—C8133.0 (6)S1i—Ru1—C13—C857.3 (4)
C12—Ru1—C9—C867.5 (4)S2i—Ru1—C13—C8117.6 (6)
C13—Ru1—C9—C830.0 (4)S1—Ru1—C13—C8142.0 (3)
C11—Ru1—C9—C8104.2 (4)C10—Ru1—C13—C1265.3 (4)
S1i—Ru1—C9—C881.2 (4)C9—Ru1—C13—C12102.1 (4)
S2i—Ru1—C9—C8167.8 (3)C8—Ru1—C13—C12132.7 (5)
S1—Ru1—C9—C81.6 (9)C11—Ru1—C13—C1228.2 (3)
C8—C9—C10—C111.9 (9)S1i—Ru1—C13—C12170.0 (3)
Ru1—C9—C10—C1156.3 (5)S2i—Ru1—C13—C1215.1 (8)
C8—C9—C10—Ru154.5 (5)S1—Ru1—C13—C1285.2 (3)
C12—Ru1—C10—C9102.8 (4)C12—C11—C14—C1555.1 (8)
C13—Ru1—C10—C965.6 (4)C10—C11—C14—C15125.9 (6)
C8—Ru1—C10—C928.8 (4)Ru1—C11—C14—C1536.0 (9)
C11—Ru1—C10—C9132.7 (6)C12—C11—C14—C1670.1 (7)
S1i—Ru1—C10—C943.8 (4)C10—C11—C14—C16109.0 (7)
S2i—Ru1—C10—C9127.1 (4)Ru1—C11—C14—C16161.2 (5)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ru2(C10H14)2(C6H4S2)2]
Mr750.98
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.237 (5), 9.813 (6), 10.237 (3)
α, β, γ (°)65.42 (4), 82.57 (3), 76.34 (6)
V3)730.8 (7)
Z1
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.33 × 0.17 × 0.03
Data collection
DiffractometerNonius CAD-4
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(SHELXA; Sheldrick, 1997)
Tmin, Tmax0.762, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
3022, 2855, 1907
Rint0.036
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.105, 1.02
No. of reflections2855
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.69

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CRYSDA (Beurskens et al., 1992), REFLEX (García-Granda et al., 1999), DIRDIF (Beurskens et al., 1992), SHELXL97 (Sheldrick, 1997), EUCLID (Spek, 1982), SHELXL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds