Download citation
Download citation
link to html
The trans–C3SnO2 trigonal bipyramidal organotin moiety in the centrosymmetric title compound, [Sn(C2F3O2)(CH3)(C6H5)2(H2O)]2·C12H24O6, is hydrogen bonded to the polyether moiety [O...O = 2.901 (8) and 2.983 (7) Å] through its coordinated water mol­ecule [Sn—O = 2.483 (5) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802003124/ci6102sup1.cif
Contains datablocks I, mma2rr

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802003124/ci6102Isup2.hkl
Contains datablock I

CCDC reference: 182587

Key indicators

  • Single-crystal X-ray study
  • T = 168 K
  • Mean [sigma](C-C) = 0.013 Å
  • R factor = 0.060
  • wR factor = 0.155
  • Data-to-parameter ratio = 14.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Triorganotin(IV) carboxylates commonly exist as either four-coordinate tetrahedral molecules or five-coordinate carboxylate-bridge polymers (Ng et al., 1988; Tiekink, 1991, 1994). Within the triphenyltin carboxylate class, a small number of compounds have sufficiently enhanced Lewis acidicity and they can form complexes with oxygen-donor ligands (Ng, 1998, 1999; Ng & Kumar Das, 1997). For the strongly electron-withdrawing trifluoroacetate anion in particular, the resulting triphenyltin trifluoroacetate is able to accept water into its coordination sphere, and it has been isolated as an 'outer-sphere coordination' complex with 1,10-phenanthroline (Ng et al., 1996). The studies on outer-sphere coordination complexes of hydrated triorganotin carboxylates are now extended to the title mixed alkyldiaryltin analog, methyldiphenyltin trifluoracetate, but with 18-crown-6 as the entity that interacts with the Sn atom through the coordinated water molecule.

The Sn atom in the title compound, (I), is five-coordinate in a trans-C3SnO2 trigonal-bipyramidal environment. The two organotin entities are located on opposite sides of the crown ether, across a center-of-symmetry that lies in the middle of the crown ether. The Sn atom lies out of the equatorial plane by 0.168 (1) Å in the direction of the carboxyl O atom [Sn O = 2.483 (5) Å]; the C1—C6 phenyl ring is tilted by 77.3 (3)° with respect to the equatorial plane whereas the other phenyl ring, C7—C12, is tilted by 18.4 (3)°. The O—H···O hydrogen-bonding interactions involve only four of the six O atoms in the crown ether [Owater···Ocrown ether = 2.901 (7) and 2.983 (7) Å].

Experimental top

Diphenylmethyltin iodide was synthesized from the cleavage of methyltriphenyltin by elemental iodine in low yield. The halide anion was exchanged for the trifluoroacetate ion by treatment with silver trifluoracetate; the synthesis was adapted from the synthesis of dimethylphenyltin acetate, which used dimethyldiphenyltin as the starting reagent (Amini et al., 1989). The disproportionation was carried out in methanol under an atmosphere of nitrogen. The silver iodide that resulted from the exhange reaction was removed by filtration, and the filtrate was treated with an equimolar (100% excess) quantity of 18-crown-6. The removal of the solvent gave the desired product, which was then purified by recrystallization from ethanol. The compound melts in the 370–376 K range. The formulation was established from satisfactory 1H NMR integral analysis. The water signal appeared as a broad peak at δ = 4.1 p.p.m.; 2J(Sn—H) = 70 Hz in CDCl3; 19F NMR = 75.6 p.p.m. The IR (KBr disk) showed peaks at 3400 (H2O), 1703, 1638 (CO) 542, 520 (Sn—C) cm-1.

Refinement top

Although the diffraction intensities were measured beyond θ = 25°, those after this limit were too weak to be of use in the refinement. The water H atoms placed in calculated positions and refined with Uiso = 0.05 Å2.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the title compound with ellipsoids at the 50% probability level.
Bis(aquadiphenylmethyltrifluoroacetatotin)–18-crown-6 (1/1) top
Crystal data top
[Sn(C2F3O2)(CH3)(C6H5)2(H2O)]2·C12H24O6Z = 1
Mr = 1102.23F(000) = 556
Triclinic, P1Dx = 1.535 Mg m3
a = 9.3175 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.0263 (11) ÅCell parameters from 4178 reflections
c = 12.1632 (12) Åθ = 1.8–26.5°
α = 106.156 (1)°µ = 1.13 mm1
β = 101.177 (1)°T = 168 K
γ = 107.211 (1)°Plate, colorless
V = 1192.5 (2) Å30.30 × 0.15 × 0.05 mm
Data collection top
Siemens CCD area-detector
diffractometer
4135 independent reflections
Radiation source: fine-focus sealed tube3066 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.729, Tmax = 0.946k = 1214
13839 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0872P)2]
where P = (Fo2 + 2Fc2)/3
4135 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 1.55 e Å3
0 restraintsΔρmin = 1.32 e Å3
Crystal data top
[Sn(C2F3O2)(CH3)(C6H5)2(H2O)]2·C12H24O6γ = 107.211 (1)°
Mr = 1102.23V = 1192.5 (2) Å3
Triclinic, P1Z = 1
a = 9.3175 (9) ÅMo Kα radiation
b = 12.0263 (11) ŵ = 1.13 mm1
c = 12.1632 (12) ÅT = 168 K
α = 106.156 (1)°0.30 × 0.15 × 0.05 mm
β = 101.177 (1)°
Data collection top
Siemens CCD area-detector
diffractometer
4135 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3066 reflections with I > 2σ(I)
Tmin = 0.729, Tmax = 0.946Rint = 0.098
13839 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.02Δρmax = 1.55 e Å3
4135 reflectionsΔρmin = 1.32 e Å3
281 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.15882 (6)0.30984 (5)0.14065 (5)0.0222 (2)
F10.2763 (7)0.1886 (7)0.2310 (5)0.081 (2)
F20.1263 (8)0.1615 (8)0.3368 (5)0.096 (3)
F30.2052 (8)0.0317 (6)0.2554 (6)0.082 (2)
O10.0289 (6)0.2026 (5)0.0304 (5)0.0340 (13)
O20.0926 (7)0.3131 (6)0.1304 (5)0.0452 (16)
O30.4611 (6)0.6993 (5)0.4266 (5)0.0359 (14)
O40.7000 (6)0.6137 (5)0.3691 (5)0.0367 (14)
O50.6665 (6)0.3819 (5)0.3940 (5)0.0352 (14)
O1w0.3702 (6)0.4305 (5)0.3349 (4)0.0289 (13)
H1w10.39690.50900.36550.050*
H1w20.44710.41020.35940.050*
C10.0391 (9)0.1932 (7)0.2268 (7)0.0284 (19)
C20.0819 (9)0.2291 (7)0.3535 (7)0.0269 (18)
H20.16650.30560.40190.032*
C30.0022 (9)0.1544 (8)0.4077 (7)0.033 (2)
H30.03200.17990.49270.039*
C40.1216 (10)0.0419 (8)0.3377 (8)0.036 (2)
H40.17640.00930.37490.043*
C50.1646 (10)0.0048 (8)0.2135 (7)0.037 (2)
H50.24880.07210.16590.044*
C60.0846 (9)0.0801 (8)0.1572 (7)0.0317 (19)
H60.11490.05400.07210.038*
C70.3449 (9)0.2637 (8)0.0835 (6)0.0268 (18)
C80.4253 (9)0.3201 (7)0.0133 (6)0.0290 (19)
H80.39300.37780.01470.035*
C90.5518 (10)0.2913 (9)0.0149 (7)0.039 (2)
H90.60370.32840.06290.047*
C100.6025 (10)0.2075 (9)0.0276 (8)0.044 (2)
H100.69000.18940.01030.053*
C110.5218 (11)0.1511 (9)0.0960 (8)0.043 (2)
H110.55460.09360.12390.051*
C120.3950 (9)0.1777 (7)0.1237 (7)0.0316 (19)
H120.34180.13800.16970.038*
C130.1264 (10)0.4815 (8)0.1567 (8)0.039 (2)
H13a0.16710.51450.09910.059*
H13b0.18330.54170.23830.059*
H13c0.01390.46700.13990.059*
C140.0153 (10)0.2312 (7)0.1237 (7)0.0289 (19)
C150.1568 (11)0.1516 (9)0.2380 (7)0.039 (2)
C160.5851 (10)0.7671 (8)0.3917 (8)0.041 (2)
H16a0.67640.82140.46360.049*
H16b0.55000.82100.35320.049*
C170.6334 (10)0.6801 (9)0.3057 (8)0.041 (2)
H17a0.54090.62080.23660.049*
H17b0.71220.72770.27510.049*
C180.7476 (11)0.5251 (9)0.2940 (8)0.042 (2)
H18a0.83590.56880.26870.051*
H18b0.65870.46830.22130.051*
C190.7984 (10)0.4525 (9)0.3659 (8)0.042 (2)
H19a0.84090.39550.31930.050*
H19b0.88270.51050.44090.050*
C200.7046 (11)0.2952 (9)0.4451 (9)0.046 (2)
H20a0.79470.34140.51930.055*
H20b0.73530.23740.38750.055*
C210.5656 (11)0.2230 (8)0.4731 (8)0.044 (2)
H21a0.47110.18880.40230.053*
H21b0.58370.15220.49140.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0195 (3)0.0209 (3)0.0266 (3)0.0059 (2)0.0076 (2)0.0103 (2)
F10.051 (4)0.106 (6)0.066 (4)0.047 (4)0.008 (3)0.002 (4)
F20.078 (5)0.148 (7)0.033 (3)0.007 (5)0.013 (3)0.031 (4)
F30.092 (5)0.039 (4)0.070 (4)0.001 (4)0.027 (4)0.012 (3)
O10.032 (3)0.038 (4)0.026 (3)0.006 (3)0.003 (2)0.013 (3)
O20.032 (4)0.059 (5)0.048 (4)0.010 (3)0.011 (3)0.032 (3)
O30.032 (3)0.023 (3)0.045 (3)0.003 (3)0.007 (3)0.012 (3)
O40.033 (3)0.043 (4)0.029 (3)0.009 (3)0.004 (3)0.014 (3)
O50.032 (3)0.031 (3)0.042 (3)0.013 (3)0.009 (3)0.013 (3)
O1w0.020 (3)0.024 (3)0.033 (3)0.003 (2)0.002 (2)0.005 (2)
C10.025 (4)0.031 (5)0.031 (4)0.013 (4)0.010 (4)0.010 (4)
C20.020 (4)0.029 (5)0.030 (4)0.006 (4)0.008 (3)0.011 (4)
C30.029 (5)0.036 (5)0.026 (4)0.002 (4)0.008 (4)0.011 (4)
C40.032 (5)0.032 (5)0.048 (5)0.004 (4)0.022 (4)0.022 (4)
C50.029 (5)0.026 (5)0.035 (5)0.008 (4)0.006 (4)0.003 (4)
C60.027 (5)0.033 (5)0.033 (4)0.009 (4)0.004 (4)0.015 (4)
C70.024 (4)0.034 (5)0.022 (4)0.011 (4)0.008 (3)0.007 (3)
C80.029 (5)0.027 (5)0.024 (4)0.006 (4)0.002 (3)0.007 (3)
C90.028 (5)0.052 (6)0.034 (5)0.009 (5)0.014 (4)0.012 (4)
C100.029 (5)0.052 (6)0.042 (5)0.015 (5)0.012 (4)0.004 (5)
C110.046 (6)0.050 (6)0.040 (5)0.032 (5)0.010 (4)0.013 (4)
C120.033 (5)0.024 (5)0.033 (5)0.009 (4)0.005 (4)0.008 (4)
C130.044 (6)0.031 (5)0.045 (5)0.015 (4)0.006 (4)0.019 (4)
C140.034 (5)0.022 (5)0.032 (5)0.011 (4)0.010 (4)0.012 (4)
C150.041 (5)0.053 (7)0.028 (5)0.021 (5)0.011 (4)0.020 (4)
C160.035 (5)0.032 (6)0.052 (6)0.002 (4)0.004 (4)0.028 (5)
C170.030 (5)0.049 (6)0.041 (5)0.002 (5)0.003 (4)0.031 (5)
C180.036 (5)0.047 (6)0.037 (5)0.005 (5)0.016 (4)0.012 (4)
C190.029 (5)0.045 (6)0.046 (5)0.011 (5)0.010 (4)0.013 (4)
C200.052 (6)0.045 (6)0.052 (6)0.032 (5)0.015 (5)0.020 (5)
C210.053 (6)0.029 (6)0.055 (6)0.016 (5)0.016 (5)0.019 (4)
Geometric parameters (Å, º) top
Sn1—C12.158 (8)C7—C81.421 (11)
Sn1—C72.149 (7)C8—C91.400 (11)
Sn1—C132.135 (8)C8—H80.95
Sn1—O12.193 (5)C9—C101.408 (13)
Sn1—O1w2.483 (5)C9—H90.95
F1—C151.325 (10)C10—C111.405 (13)
F2—C151.316 (10)C10—H100.95
F3—C151.317 (11)C11—C121.389 (11)
O1—C141.292 (9)C11—H110.95
O2—C141.216 (10)C12—H120.95
O3—C161.416 (10)C13—H13a0.98
O3—C21i1.430 (10)C13—H13b0.98
O4—C181.436 (10)C13—H13c0.98
O4—C171.437 (10)C14—C151.545 (12)
O5—C191.433 (10)C16—C171.498 (12)
O5—C201.447 (10)C16—H16a0.99
O1w—H1w10.85C16—H16b0.99
O1w—H1w20.85C17—H17a0.99
C1—C61.396 (11)C17—H17b0.99
C1—C21.417 (10)C18—C191.503 (13)
C2—C31.385 (11)C18—H18a0.99
C2—H20.95C18—H18b0.99
C3—C41.393 (11)C19—H19a0.99
C3—H30.95C19—H19b0.99
C4—C51.388 (11)C20—C211.489 (13)
C4—H40.95C20—H20a0.99
C5—C61.411 (12)C20—H20b0.99
C5—H50.95C21—O3i1.430 (10)
C6—H60.95C21—H21a0.99
C7—C121.416 (11)C21—H21b0.99
C1—Sn1—C7115.0 (3)C7—C12—H12119.9
C1—Sn1—C13118.8 (3)Sn1—C13—H13a109.5
C1—Sn1—O191.2 (3)Sn1—C13—H13b109.5
C1—Sn1—O1w88.4 (2)H13a—C13—H13b109.5
C7—Sn1—C13124.4 (3)Sn1—C13—H13c109.5
C7—Sn1—O197.4 (2)H13a—C13—H13c109.5
C7—Sn1—O1w82.9 (2)H13b—C13—H13c109.5
C13—Sn1—O194.6 (3)O2—C14—O1127.8 (8)
C13—Sn1—O1w85.5 (3)O2—C14—C15117.8 (7)
O1—Sn1—O1w179.6 (2)O1—C14—C15114.4 (7)
C14—O1—Sn1119.1 (5)F2—C15—F3106.0 (8)
C16—O3—C21i112.1 (7)F2—C15—F1106.0 (8)
C18—O4—C17112.5 (6)F3—C15—F1108.4 (8)
C19—O5—C20111.0 (6)F2—C15—C14113.3 (8)
Sn1—O1w—H1w1120.0F3—C15—C14112.8 (7)
Sn1—O1w—H1w2124.4F1—C15—C14109.9 (7)
H1w1—O1w—H1w2109.6O3—C16—C17110.5 (7)
C6—C1—C2118.7 (7)O3—C16—H16a109.5
C6—C1—Sn1119.7 (6)C17—C16—H16a109.5
C2—C1—Sn1121.5 (6)O3—C16—H16b109.5
C3—C2—C1120.9 (7)C17—C16—H16b109.5
C3—C2—H2119.5H16a—C16—H16b108.1
C1—C2—H2119.5O4—C17—C16107.8 (7)
C2—C3—C4120.1 (7)O4—C17—H17a110.1
C2—C3—H3119.9C16—C17—H17a110.1
C4—C3—H3119.9O4—C17—H17b110.1
C5—C4—C3119.8 (7)C16—C17—H17b110.1
C5—C4—H4120.1H17a—C17—H17b108.5
C3—C4—H4120.1O4—C18—C19107.6 (7)
C4—C5—C6120.7 (8)O4—C18—H18a110.2
C4—C5—H5119.7C19—C18—H18a110.2
C6—C5—H5119.7O4—C18—H18b110.2
C1—C6—C5119.8 (8)C19—C18—H18b110.2
C1—C6—H6120.1H18a—C18—H18b108.5
C5—C6—H6120.1O5—C19—C18109.7 (7)
C12—C7—C8118.6 (7)O5—C19—H19a109.7
C12—C7—Sn1117.9 (6)C18—C19—H19a109.7
C8—C7—Sn1123.3 (6)O5—C19—H19b109.7
C9—C8—C7120.4 (8)C18—C19—H19b109.7
C9—C8—H8119.8H19a—C19—H19b108.2
C7—C8—H8119.8O5—C20—C21109.8 (7)
C8—C9—C10120.4 (8)O5—C20—H20a109.7
C8—C9—H9119.8C21—C20—H20a109.7
C10—C9—H9119.8O5—C20—H20b109.7
C11—C10—C9119.0 (8)C21—C20—H20b109.7
C11—C10—H10120.5H20a—C20—H20b108.2
C9—C10—H10120.5O3i—C21—C20110.6 (7)
C12—C11—C10121.4 (8)O3i—C21—H21a109.5
C12—C11—H11119.3C20—C21—H21a109.5
C10—C11—H11119.3O3i—C21—H21b109.5
C11—C12—C7120.2 (8)C20—C21—H21b109.5
C11—C12—H12119.9H21a—C21—H21b108.1
C13—Sn1—O1—C1463.4 (6)O1w—Sn1—C7—C8102.5 (6)
C7—Sn1—O1—C1462.1 (6)C12—C7—C8—C90.3 (11)
C1—Sn1—O1—C14177.5 (6)Sn1—C7—C8—C9176.2 (6)
C13—Sn1—C1—C6109.9 (6)C7—C8—C9—C101.0 (12)
C7—Sn1—C1—C684.7 (6)C8—C9—C10—C111.6 (13)
O1—Sn1—C1—C614.0 (6)C9—C10—C11—C120.9 (13)
O1w—Sn1—C1—C6166.1 (6)C10—C11—C12—C70.4 (13)
C13—Sn1—C1—C269.3 (7)C8—C7—C12—C110.9 (11)
C7—Sn1—C1—C296.0 (6)Sn1—C7—C12—C11175.7 (6)
O1—Sn1—C1—C2165.3 (6)Sn1—O1—C14—O20.2 (11)
O1w—Sn1—C1—C214.6 (6)Sn1—O1—C14—C15178.4 (5)
C6—C1—C2—C30.5 (11)O2—C14—C15—F216.0 (11)
Sn1—C1—C2—C3178.8 (6)O1—C14—C15—F2165.2 (8)
C1—C2—C3—C40.3 (12)O2—C14—C15—F3136.5 (8)
C2—C3—C4—C50.1 (13)O1—C14—C15—F344.7 (10)
C3—C4—C5—C60.3 (13)O2—C14—C15—F1102.4 (9)
C2—C1—C6—C50.3 (11)O1—C14—C15—F176.4 (9)
Sn1—C1—C6—C5179.0 (6)C21i—O3—C16—C17167.5 (7)
C4—C5—C6—C10.0 (13)C18—O4—C17—C16178.7 (7)
C13—Sn1—C7—C12153.5 (6)O3—C16—C17—O465.7 (9)
C1—Sn1—C7—C1210.9 (7)C17—O4—C18—C19174.0 (7)
O1—Sn1—C7—C12105.8 (6)C20—O5—C19—C18170.2 (7)
O1w—Sn1—C7—C1273.9 (6)O4—C18—C19—O564.4 (9)
C13—Sn1—C7—C823.0 (8)C19—O5—C20—C21179.8 (7)
C1—Sn1—C7—C8172.6 (6)O5—C20—C21—O3i71.2 (9)
O1—Sn1—C7—C877.8 (6)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O30.852.052.901 (7)176
O1w—H1w2···O50.852.152.983 (7)166

Experimental details

Crystal data
Chemical formula[Sn(C2F3O2)(CH3)(C6H5)2(H2O)]2·C12H24O6
Mr1102.23
Crystal system, space groupTriclinic, P1
Temperature (K)168
a, b, c (Å)9.3175 (9), 12.0263 (11), 12.1632 (12)
α, β, γ (°)106.156 (1), 101.177 (1), 107.211 (1)
V3)1192.5 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.30 × 0.15 × 0.05
Data collection
DiffractometerSiemens CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.729, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
13839, 4135, 3066
Rint0.098
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.155, 1.02
No. of reflections4135
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.55, 1.32

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Sn1—C12.158 (8)Sn1—O12.193 (5)
Sn1—C72.149 (7)Sn1—O1w2.483 (5)
Sn1—C132.135 (8)
C1—Sn1—C7115.0 (3)C7—Sn1—O197.4 (2)
C1—Sn1—C13118.8 (3)C7—Sn1—O1w82.9 (2)
C1—Sn1—O191.2 (3)C13—Sn1—O194.6 (3)
C1—Sn1—O1w88.4 (2)C13—Sn1—O1w85.5 (3)
C7—Sn1—C13124.4 (3)O1—Sn1—O1w179.6 (2)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds