Download citation
Download citation
link to html
In the crystalline state, the title mol­ecule, C17H16N2O6S, with its five-membered ring in an envelope conformation, produces a three-dimensional network of weak intermolecular hydro­gen-bonding interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801019791/ci6076sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801019791/ci6076Isup2.hkl
Contains datablock I

CCDC reference: 180549

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.029
  • wR factor = 0.073
  • Data-to-parameter ratio = 11.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry
Yellow Alert Alert Level C:
PLAT_716 Alert C H...A Unknown or Inconsistent Label ........ C~G~B H2 C~G~B PLAT_716 Alert C H...A Unknown or Inconsistent Label ........ C~G~A H14 C~G~A PLAT_717 Alert C D...A Unknown or Inconsistent Label ........ C~G~B C2 C~G~B PLAT_717 Alert C D...A Unknown or Inconsistent Label ........ C~G~A C14 C~G~A PLAT_718 Alert C D-H..A Unknown or Inconsistent label ........ C~G~B C2 H2 C~G~B PLAT_718 Alert C D-H..A Unknown or Inconsistent label ........ C~G~A C14 H14 C~G~A General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 26.40 From the CIF: _reflns_number_total 3312 Count of symmetry unique reflns 1986 Completeness (_total/calc) 166.77% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1326 Fraction of Friedel pairs measured 0.668 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
6 Alert Level C = Please check

Comment top

During our studies toward α,β-disubstituted β-amino acids posessing sheet-forming propensity, we isolated and structurally characterized (2S,3S)-2-benzyl-3-(nosylamino)butano-4-lactone, (I).

Compound (I) crystallizes in the chiral space group P212121 as discrete molecules with the S configuration about the two chiral centers C7 and C10. The five-membered heterocycle is in an envelope conformation, with C7 deviating from the C8/C9/C10/O5 plane by 0.409 (2) Å. The puckering amplitude q2 is 0.257 (2) Å, while the phase angle ϕ2 is 0.7 (4)° (Cremer & Pople, 1975). Expectedly, the latter corresponds to the 1E conformation. The nitro group at C1 is not coplanar with the C1—C6 ring as the planar arrangement would bring atoms O1 and H2, as well as atoms O1 and O3, into close proximity to induce steric repulsion. The torsion angle O1—N1—C1—C2 measures 50.8 (2)°.

There are weak intermolecular hydrogen bonding interactions in the crystal of (I) that form a three-dimensional network. These include N—H···O, C—H···O and C—H···π interactions (Table 2; CgA is the centroid of the C1—C6 ring and CgB is the centroid of the C12—C17 ring). In addition, the centroids of rings C1—C6 and C12—C17 are within 3.807 (1) Å, resulting in intramolecualr π-stacking. The rings are almost parallel, with a dihedral angle between the ring planes of 13.03 (9)°.

Atom N2 is almost planar, with the sum of the bond angles about it amounting to 352.58 (13)°. Thus, atom N2 is essentially in an sp2 configuration. A search of the Cambridge Structural Database (Allen & Kennard, 1993) revealed 24 molecules with similar S—N single bonds. The average bond lrngth of 1.62 (2) Å somewhat exceeds the length of the S—N2 bond in (I) [1.5987 (16) Å] which is likely due to the increased sp2 character of atom N2.

Experimental top

(2S, 3S)-2-Benzyl-3-(nosylamino)butano-4-lactone was synthesized from (3S)-3-(nosylamino)butano-4-lactone according to the procedure developed by Jefford et al. (1993, 1994). To a solution of HMDS (2.3 equivalents) and n-BuLi (2.3 equivalents) at 195 K, (3S)-3-(nosylamino)butano-4-lactone was added. Benzyl bromide (2.1 equivalents) was added to the resultant dianion to afford a mixture of products which, after chromatography, provided (I) in a 42% yield. 1H NMR (CDCl3 + DMSO, 296 K, p.p.m.): δ 8.30 (s, 1H), 7.95–7.92 (d, 1H), 7.80–7.69 (m, 2H), 7.14–7.02 (m, 5H), 4.19–3.99 (AB of ABX, 2H), 3.94–3.80 (X of ABX, 1H), 3.12 (m, 1H), 3.00–2.97 (m, 2H); 13C NMR (CDCl3 + DMSO, 296 K, p.p.m.): δ 175.3, 136.3, 133.7, 133.4, 132.2, 130.3, 129.1, 128.2, 126.5, 124.6, 70.9, 52.8, 45.7, 32.7.

Refinement top

H atoms were located from a difference map and both positional and isotropic displacement parameters were refined. For H atoms, the C—H range is 0.87 (2)–1.03 (2) Å and the N—H distance is 0.78 (2) Å.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PARST (Nardelli, 1983, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids shown at the 30% probability level.
(2S,3S)-2-benzyl-3-(nosylamino)butano-4-lactone top
Crystal data top
C17H16N2O6SDx = 1.494 Mg m3
Mr = 376.38Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 5380 reflections
a = 7.3711 (5) Åθ = 2.0–26.0°
b = 11.0756 (7) ŵ = 0.23 mm1
c = 20.5014 (12) ÅT = 173 K
V = 1673.72 (18) Å3Block, colorless
Z = 40.50 × 0.40 × 0.30 mm
F(000) = 784
Data collection top
Bruker CCD-1000
diffractometer
3312 independent reflections
Radiation source: fine-focus sealed tube3081 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 26.4°, θmin = 2.0°
Absorption correction: empirical (using intensity measurements)
SADABS(Blessing, 1995)
h = 98
Tmin = 0.893, Tmax = 0.934k = 1313
7922 measured reflectionsl = 2512
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029All H-atom parameters refined
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.045P)2 + 0.1922P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3312 reflectionsΔρmax = 0.32 e Å3
299 parametersΔρmin = 0.27 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (6)
Crystal data top
C17H16N2O6SV = 1673.72 (18) Å3
Mr = 376.38Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3711 (5) ŵ = 0.23 mm1
b = 11.0756 (7) ÅT = 173 K
c = 20.5014 (12) Å0.50 × 0.40 × 0.30 mm
Data collection top
Bruker CCD-1000
diffractometer
3312 independent reflections
Absorption correction: empirical (using intensity measurements)
SADABS(Blessing, 1995)
3081 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.934Rint = 0.023
7922 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029All H-atom parameters refined
wR(F2) = 0.073Δρmax = 0.32 e Å3
S = 1.03Δρmin = 0.27 e Å3
3312 reflectionsAbsolute structure: Flack (1983)
299 parametersAbsolute structure parameter: 0.04 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.06374 (6)0.16572 (4)0.93365 (2)0.02106 (11)
O10.2540 (2)0.49288 (12)0.87315 (8)0.0391 (4)
O20.39755 (18)0.33514 (13)0.90810 (7)0.0342 (3)
O30.03731 (18)0.28085 (11)0.96477 (6)0.0286 (3)
O40.07450 (17)0.07557 (12)0.93633 (6)0.0296 (3)
O50.3256 (2)0.12213 (13)1.08185 (7)0.0365 (4)
O60.5701 (2)0.22510 (13)1.05290 (7)0.0429 (4)
N10.2836 (2)0.38435 (13)0.87408 (7)0.0240 (3)
N20.2482 (2)0.10667 (13)0.95939 (8)0.0229 (3)
H2N0.311 (3)0.156 (2)0.9746 (11)0.034 (6)*
C10.1805 (2)0.30776 (15)0.82852 (8)0.0218 (4)
C20.1804 (2)0.34321 (17)0.76410 (9)0.0241 (4)
H20.239 (3)0.4139 (18)0.7524 (9)0.021 (5)*
C30.0921 (3)0.27125 (17)0.71853 (9)0.0273 (4)
H30.092 (3)0.2931 (18)0.6744 (10)0.033 (6)*
C40.0067 (3)0.16616 (19)0.73802 (9)0.0287 (4)
H40.056 (3)0.1119 (18)0.7065 (11)0.037 (6)*
C50.0056 (2)0.13294 (17)0.80332 (10)0.0257 (4)
H50.056 (3)0.062 (2)0.8184 (10)0.032 (5)*
C60.0935 (2)0.20293 (15)0.84940 (8)0.0204 (4)
C70.2602 (3)0.01705 (16)0.98394 (9)0.0234 (4)
H70.184 (3)0.0611 (17)0.9621 (9)0.016 (5)*
C80.2139 (3)0.0258 (2)1.05657 (11)0.0372 (5)
H8A0.249 (3)0.046 (2)1.0808 (10)0.031 (6)*
H8B0.085 (3)0.0511 (18)1.0634 (10)0.029 (5)*
C90.4617 (3)0.14788 (16)1.04065 (9)0.0298 (4)
C100.4527 (3)0.06845 (16)0.98030 (9)0.0246 (4)
H100.537 (3)0.0037 (17)0.9859 (9)0.024 (5)*
C110.4992 (3)0.14105 (17)0.91920 (9)0.0304 (4)
H11A0.633 (3)0.167 (2)0.9245 (11)0.040 (6)*
H11B0.425 (3)0.2158 (18)0.9185 (9)0.025 (5)*
C120.4705 (2)0.07330 (16)0.85620 (9)0.0256 (4)
C130.3668 (3)0.1244 (2)0.80671 (11)0.0323 (4)
H130.310 (3)0.192 (2)0.8125 (11)0.037 (6)*
C140.3429 (3)0.0660 (2)0.74782 (11)0.0395 (5)
H140.267 (3)0.1061 (18)0.7157 (12)0.037 (6)*
C150.4208 (3)0.0453 (2)0.73718 (10)0.0373 (5)
H150.404 (3)0.0849 (19)0.6957 (12)0.038 (6)*
C160.5214 (3)0.09874 (18)0.78649 (10)0.0325 (5)
H160.572 (3)0.178 (2)0.7795 (11)0.037 (6)*
C170.5466 (3)0.04018 (17)0.84510 (10)0.0283 (4)
H170.611 (3)0.0745 (17)0.8795 (10)0.023 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0217 (2)0.0226 (2)0.0189 (2)0.00135 (17)0.00115 (17)0.00188 (17)
O10.0550 (9)0.0213 (7)0.0409 (9)0.0015 (6)0.0095 (7)0.0027 (6)
O20.0376 (8)0.0312 (7)0.0336 (7)0.0055 (6)0.0129 (6)0.0052 (6)
O30.0351 (8)0.0264 (6)0.0243 (7)0.0068 (6)0.0063 (6)0.0009 (5)
O40.0256 (6)0.0341 (7)0.0291 (7)0.0033 (6)0.0009 (6)0.0073 (6)
O50.0467 (8)0.0356 (8)0.0272 (8)0.0096 (7)0.0053 (6)0.0110 (6)
O60.0544 (9)0.0343 (8)0.0398 (8)0.0151 (8)0.0063 (8)0.0067 (6)
N10.0279 (8)0.0244 (8)0.0197 (7)0.0014 (6)0.0006 (6)0.0025 (6)
N20.0252 (8)0.0173 (7)0.0262 (8)0.0015 (6)0.0042 (7)0.0024 (6)
C10.0218 (9)0.0227 (9)0.0209 (9)0.0031 (7)0.0017 (7)0.0021 (7)
C20.0249 (9)0.0238 (9)0.0234 (9)0.0045 (8)0.0024 (7)0.0034 (8)
C30.0311 (10)0.0341 (10)0.0168 (9)0.0079 (9)0.0005 (8)0.0016 (7)
C40.0292 (9)0.0326 (10)0.0245 (9)0.0026 (9)0.0042 (7)0.0071 (9)
C50.0241 (8)0.0259 (9)0.0271 (9)0.0006 (7)0.0000 (7)0.0017 (8)
C60.0201 (9)0.0234 (8)0.0175 (8)0.0042 (7)0.0002 (7)0.0016 (7)
C70.0270 (9)0.0177 (8)0.0255 (10)0.0014 (8)0.0007 (8)0.0011 (7)
C80.0450 (13)0.0335 (11)0.0331 (12)0.0109 (10)0.0097 (10)0.0112 (9)
C90.0390 (11)0.0234 (9)0.0270 (9)0.0030 (9)0.0058 (8)0.0001 (7)
C100.0279 (9)0.0213 (8)0.0246 (9)0.0012 (8)0.0017 (8)0.0017 (7)
C110.0379 (10)0.0243 (9)0.0289 (10)0.0054 (8)0.0040 (8)0.0003 (7)
C120.0236 (10)0.0273 (9)0.0260 (9)0.0050 (8)0.0059 (7)0.0013 (7)
C130.0299 (10)0.0333 (11)0.0336 (11)0.0027 (9)0.0029 (9)0.0085 (9)
C140.0336 (11)0.0544 (15)0.0305 (12)0.0072 (11)0.0044 (9)0.0122 (10)
C150.0360 (11)0.0501 (13)0.0257 (10)0.0191 (11)0.0028 (9)0.0042 (9)
C160.0322 (11)0.0321 (11)0.0332 (11)0.0054 (9)0.0090 (8)0.0032 (8)
C170.0257 (10)0.0322 (10)0.0269 (10)0.0014 (8)0.0023 (8)0.0037 (8)
Geometric parameters (Å, º) top
S—O41.4277 (14)C7—C81.531 (3)
S—O31.4391 (13)C7—C101.531 (3)
S—N21.5987 (16)C7—H70.867 (19)
S—C61.7891 (17)C8—H8A0.97 (2)
O1—N11.2218 (19)C8—H8B1.00 (2)
O2—N11.2203 (19)C9—C101.519 (3)
O5—C91.342 (2)C10—C111.527 (3)
O5—C81.443 (2)C10—H100.95 (2)
O6—C91.197 (2)C11—C121.509 (3)
N1—C11.473 (2)C11—H11A1.04 (2)
N2—C71.462 (2)C11—H11B0.99 (2)
N2—H2N0.78 (2)C12—C131.391 (3)
C1—C21.378 (2)C12—C171.395 (3)
C1—C61.394 (2)C13—C141.381 (3)
C2—C31.390 (3)C13—H130.87 (2)
C2—H20.93 (2)C14—C151.377 (3)
C3—C41.382 (3)C14—H140.97 (2)
C3—H30.94 (2)C15—C161.387 (3)
C4—C51.389 (3)C15—H150.96 (2)
C4—H41.00 (2)C16—C171.378 (3)
C5—C61.383 (3)C16—H160.96 (2)
C5—H50.96 (2)C17—H170.93 (2)
O4—S—O3120.40 (8)O5—C8—H8A105.6 (13)
O4—S—N2107.96 (8)C7—C8—H8A112.8 (13)
O3—S—N2109.35 (9)O5—C8—H8B106.6 (12)
O4—S—C6106.61 (8)C7—C8—H8B111.4 (12)
O3—S—C6103.92 (7)H8A—C8—H8B114.0 (18)
N2—S—C6107.98 (8)O6—C9—O5121.25 (18)
C9—O5—C8110.94 (15)O6—C9—C10127.85 (19)
O2—N1—O1124.85 (16)O5—C9—C10110.90 (15)
O2—N1—C1117.41 (14)C9—C10—C11110.68 (15)
O1—N1—C1117.67 (15)C9—C10—C7102.48 (15)
C7—N2—S123.23 (13)C11—C10—C7116.32 (16)
C7—N2—H2N118.8 (16)C9—C10—H10108.0 (12)
S—N2—H2N110.6 (16)C11—C10—H10110.4 (12)
C2—C1—C6122.12 (16)C7—C10—H10108.4 (12)
C2—C1—N1116.36 (16)C12—C11—C10114.14 (15)
C6—C1—N1121.49 (16)C12—C11—H11A111.2 (13)
C1—C2—C3118.76 (18)C10—C11—H11A105.9 (13)
C1—C2—H2119.3 (12)C12—C11—H11B109.0 (11)
C3—C2—H2122.0 (12)C10—C11—H11B109.2 (11)
C4—C3—C2120.13 (17)H11A—C11—H11B107.2 (17)
C4—C3—H3119.8 (13)C13—C12—C17117.94 (18)
C2—C3—H3120.0 (14)C13—C12—C11119.95 (18)
C3—C4—C5120.29 (18)C17—C12—C11122.11 (18)
C3—C4—H4122.1 (13)C14—C13—C12121.2 (2)
C5—C4—H4117.6 (13)C14—C13—H13117.7 (16)
C6—C5—C4120.48 (18)C12—C13—H13121.1 (16)
C6—C5—H5117.4 (12)C15—C14—C13120.3 (2)
C4—C5—H5122.1 (12)C15—C14—H14122.8 (13)
C5—C6—C1118.21 (17)C13—C14—H14116.9 (13)
C5—C6—S118.21 (14)C14—C15—C16119.3 (2)
C1—C6—S123.01 (13)C14—C15—H15119.6 (13)
N2—C7—C8112.38 (16)C16—C15—H15121.1 (13)
N2—C7—C10112.79 (15)C17—C16—C15120.4 (2)
C8—C7—C10103.31 (16)C17—C16—H16120.4 (13)
N2—C7—H7108.1 (12)C15—C16—H16119.2 (13)
C8—C7—H7108.9 (13)C16—C17—C12120.82 (19)
C10—C7—H7111.3 (12)C16—C17—H17122.5 (12)
O5—C8—C7105.61 (16)C12—C17—H17116.7 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O3i0.78 (2)2.19 (2)2.917 (2)154 (2)
C7—H7···O6ii0.867 (19)2.532 (19)3.269 (2)143.5 (16)
C2—H2···CgBiii0.93 (2)2.66 (2)3.4214 (18)139.7 (17)
C14—H14···CgAiv0.97 (2)3.17 (2)3.936 (2)136.8 (18)
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x1/2, y1/2, z+2; (iii) x+1, y+1/2, z+3/2; (iv) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H16N2O6S
Mr376.38
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)7.3711 (5), 11.0756 (7), 20.5014 (12)
V3)1673.72 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.50 × 0.40 × 0.30
Data collection
DiffractometerBruker CCD-1000
diffractometer
Absorption correctionEmpirical (using intensity measurements)
SADABS(Blessing, 1995)
Tmin, Tmax0.893, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
7922, 3312, 3081
Rint0.023
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.03
No. of reflections3312
No. of parameters299
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.32, 0.27
Absolute structureFlack (1983)
Absolute structure parameter0.04 (6)

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997), SHELXTL (Bruker, 1997), SHELXTL and PARST (Nardelli, 1983, 1995).

Selected bond lengths (Å) top
S—O41.4277 (14)S—C61.7891 (17)
S—O31.4391 (13)O1—N11.2218 (19)
S—N21.5987 (16)O2—N11.2203 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O3i0.78 (2)2.19 (2)2.917 (2)154 (2)
C7—H7···O6ii0.867 (19)2.532 (19)3.269 (2)143.5 (16)
C2—H2···CgBiii0.93 (2)2.66 (2)3.4214 (18)139.7 (17)
C14—H14···CgAiv0.97 (2)3.17 (2)3.936 (2)136.8 (18)
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x1/2, y1/2, z+2; (iii) x+1, y+1/2, z+3/2; (iv) x, y1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds