Download citation
Download citation
link to html
The crystal structure of the proton-transfer compound from the reaction of 3,5-di­nitro­salicylic acid (DNSA) with sulfanil­amide (ABSA), i.e. 4-sulfon­amido­anilinium 3,5-di­nitro­salicyl­ate, C6H9N2O2S+·C7H3N2O7, shows an extensively hydrogen-bonded polymeric structure in which the protonated amino group of sulfanil­amide together with the amide group give a total of eight intermolecular interactions with most of the O atoms of the DNSA anions [N...O 2.822 (2)–3.172 (2) Å], together with both of the sulfonate O atoms of adjacent ABSA cations [N...O 2.867 (2) and 3.090 (2) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801016841/ci6068sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801016841/ci6068Isup2.hkl
Contains datablock I

CCDC reference: 176008

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.037
  • wR factor = 0.098
  • Data-to-parameter ratio = 12.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

3,5-Dinitrosalicylic acid (DNSA) provides one of the best chemical synthons for the construction of hydrogen-bonded structural motifs. The acid has provided examples of polymorphism in which associations with solvent molecules such as water (two examples), dioxane (four examples) and tert-butyl alcohol (one example) give a variety of hydrogen-bonded molecular assemblies (Smith et al., 1995; Kumar et al., 1999). The low pKa of the acid (2.18) also means that with Lewis bases, protonation of the hetero-N atom usually occurs, giving further promotion of hydrogen bonding. We have synthesized and determined the structures of the proton-transfer compounds with the isomeric aminobenzoic acids (Smith et al., 1995), viz. 3-amino-1H-1,2,4-triazole (Smith et al., 1996), 8-aminoquinoline (Smith, Wermuth, Bott et al., 2001), 8-hydroxyquinoline (Smith, Wermuth & White, 2001), guanidine (Smith, Bott & Wermuth, 2001a) and 8-quinolylurea (Smith, Bott & Wermuth, 2001b). All of these are 1:1 except for the 1:2 adduct with 4-aminobenzoic acid.

In a continuation of the study of the nature of the interactions of DNSA with Lewis bases, reaction with sulfanilamide (4-aminobenzenesulfonamide, ABSA), gave large yellow crystals of the title compound [(ABSA)+(DNSA)-], (I). The structure determination has shown that the amine group of sulfanilamide is protonated (Fig. 1), subsequently giving an extensively hydrogen-bonded network polymer in which all ABSA H atoms are involved in a total of eight associations [five to the protonated amine (two three-centred); three to the amide (one three-centred)], with DNSA oxygen acceptors or sulfonate O atoms of other ABSA molecules.

The sulfonilamide cation molecules form centrosymmetric hydrogen-bonded cyclic dimers through the sulfonamide groups [N4—H4C···O9 2.867 (2) Å: symmetry code: -x, 2 - y, 2 - z] (Fig. 2). These dimers are linked by weak hydrogen bonds [C10—H10···O8 3.171 (2) Å; symmetry code: 1 - x, y, z] to form infinite chains extending down the a axis of the cell. Hydrogen bonds between the protonated amine groups and sulfanilamide O atoms [N3—H3A···O8 3.090 (2) Å; symmetry code: 1 - x, 1 - y, 2 - z] form a two-dimensional network parallel to (001). The 3,5-dinitrosalicylate anion molecules are stacked down the a cell direction and are linked peripherally to the ABSA framework sheets by N—H···O hydrogen bonds (Table 1).

The usual intramolecular hydrogen bonding is found between the phenolic O atom and the anti-related H atom on the carboxyl group [O2—H1···O1 2.462 (2) Å], comparing closely with the mean for the current series (2.461 Å). This arrangement with the H atom located on the carboxyl O atom rather than the phenolic O atom is found in 75% of the known proton-transfer compounds of DNSA with Lewis bases (Smith, Bott, Wermuth, Healy et al., 2001).

Experimental top

The synthesis of the title compound was carried out by heating under reflux for 10 min, 1 mmol quantities of 3,5-dinitrosalicylic acid and sulfanilamide (4-aminobenzenesulfonamide) in 30 ml of 80% ethanol/water. Crystals were obtained after partial room-temperature evaporation of solvent.

Refinement top

H atoms were located from a difference map and both positional and isotropic displacement parameters were refined. For H atoms: C—H range 0.88 (2)–0.96 (2) Å; N—H range 0.81 (3)–0.93 (3) Å, and the intramolecular O—H distance is 1.03 (4) Å.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: PROCESS DATA (Gable et al., 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON for Windows (Spek, 1999).

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for (I) with atoms shown as 30% probability ellipsoids.
[Figure 2] Fig. 2. Packing in the unit cell viewed down a, showing hydrogen-bonding associations as broken lines.
(I) top
Crystal data top
C7H3N2O7+·C6H9N2O2SF(000) = 412
Mr = 400.33Dx = 1.702 Mg m3
Triclinic, P1Melting point = 471–474 K
a = 7.0167 (9) ÅMo Kα radiation, λ = 0.71069 Å
b = 9.137 (1) ÅCell parameters from 25 reflections
c = 12.430 (1) Åθ = 12–15°
α = 90.77 (1)°µ = 0.27 mm1
β = 99.736 (9)°T = 293 K
γ = 95.70 (1)°Prismatic, yellow
V = 781.17 (15) Å30.35 × 0.25 × 0.20 mm
Z = 2
Data collection top
Nonius CAD-4
diffractometer
Rint = 0.010
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 2.2°
Graphite monochromatorh = 09
ω–2θ scansk = 1111
3867 measured reflectionsl = 1615
3575 independent reflections3 standard reflections every 160 min
3080 reflections with I > 2σ(I) intensity decay: 5.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037All H-atom parameters refined
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.3779P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.006
3575 reflectionsΔρmax = 0.39 e Å3
293 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (2)
Crystal data top
C7H3N2O7+·C6H9N2O2Sγ = 95.70 (1)°
Mr = 400.33V = 781.17 (15) Å3
Triclinic, P1Z = 2
a = 7.0167 (9) ÅMo Kα radiation
b = 9.137 (1) ŵ = 0.27 mm1
c = 12.430 (1) ÅT = 293 K
α = 90.77 (1)°0.35 × 0.25 × 0.20 mm
β = 99.736 (9)°
Data collection top
Nonius CAD-4
diffractometer
Rint = 0.010
3867 measured reflections3 standard reflections every 160 min
3575 independent reflections intensity decay: 5.0%
3080 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098All H-atom parameters refined
S = 1.05Δρmax = 0.39 e Å3
3575 reflectionsΔρmin = 0.35 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Because of the quality of the diffraction data, both positional and isotropic thermal parameters for the hydrogen atoms were refined after location by difference methods.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35087 (6)0.71792 (4)0.94734 (3)0.02694 (12)
O10.2139 (2)0.24127 (13)0.42861 (10)0.0380 (3)
O20.1911 (2)0.19643 (14)0.62114 (12)0.0462 (4)
O30.1827 (3)0.38115 (15)0.73562 (11)0.0501 (4)
O40.3104 (3)0.88515 (15)0.61647 (12)0.0499 (4)
O50.2881 (3)0.92742 (15)0.44514 (13)0.0649 (5)
O60.3404 (3)0.52808 (19)0.19908 (13)0.0713 (6)
O70.1673 (3)0.32814 (18)0.21878 (12)0.0630 (5)
O80.55495 (19)0.72510 (15)0.98855 (11)0.0394 (3)
O90.2929 (2)0.77867 (15)0.84179 (10)0.0393 (3)
N10.2535 (2)0.44434 (17)0.25418 (12)0.0358 (3)
N20.2931 (2)0.84362 (15)0.52100 (13)0.0341 (3)
N30.2456 (3)0.55353 (17)0.94170 (15)0.0367 (4)
N40.0079 (2)1.04475 (16)1.26713 (12)0.0285 (3)
C10.2325 (2)0.43951 (17)0.55606 (13)0.0255 (3)
C20.2308 (2)0.38119 (17)0.44778 (13)0.0259 (3)
C30.2539 (2)0.48888 (18)0.36743 (13)0.0272 (3)
C40.2773 (2)0.63791 (18)0.39093 (14)0.0282 (3)
C50.2768 (2)0.68640 (16)0.49655 (13)0.0265 (3)
C60.2549 (2)0.58874 (17)0.57955 (13)0.0265 (3)
C70.2017 (3)0.33762 (18)0.64612 (13)0.0305 (4)
C80.2444 (2)0.81196 (17)1.04360 (12)0.0258 (3)
C90.0450 (3)0.79465 (19)1.03839 (14)0.0314 (4)
C100.0368 (3)0.87180 (19)1.11212 (14)0.0312 (4)
C110.0826 (2)0.96653 (17)1.18838 (12)0.0252 (3)
C120.2803 (3)0.9870 (2)1.19299 (15)0.0349 (4)
C130.3625 (3)0.9076 (2)1.11989 (15)0.0356 (4)
H10.196 (5)0.188 (4)0.539 (3)0.104 (11)*
H3A0.287 (4)0.504 (3)0.993 (2)0.061 (8)*
H3B0.228 (4)0.514 (3)0.879 (2)0.058 (7)*
H40.291 (3)0.703 (3)0.3406 (19)0.045 (6)*
H4A0.079 (4)1.108 (3)1.312 (2)0.048 (6)*
H4B0.073 (4)0.975 (3)1.305 (2)0.054 (7)*
H4C0.095 (3)1.099 (3)1.2305 (19)0.047 (6)*
H60.258 (3)0.624 (2)0.6510 (17)0.034 (5)*
H90.034 (3)0.734 (2)0.9835 (18)0.040 (6)*
H100.175 (3)0.858 (2)1.1112 (18)0.045 (6)*
H120.358 (3)1.052 (2)1.2448 (19)0.043 (6)*
H130.491 (3)0.919 (2)1.1214 (19)0.046 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0316 (2)0.0261 (2)0.0246 (2)0.00636 (15)0.00722 (15)0.00042 (14)
O10.0594 (9)0.0210 (6)0.0322 (6)0.0025 (5)0.0048 (6)0.0031 (5)
O20.0802 (11)0.0231 (6)0.0389 (7)0.0033 (6)0.0215 (7)0.0042 (5)
O30.0857 (12)0.0359 (7)0.0298 (7)0.0001 (7)0.0165 (7)0.0007 (5)
O40.0831 (11)0.0281 (7)0.0422 (8)0.0031 (7)0.0239 (7)0.0087 (6)
O50.1223 (16)0.0238 (7)0.0453 (8)0.0059 (8)0.0049 (9)0.0087 (6)
O60.1260 (17)0.0514 (9)0.0403 (8)0.0152 (10)0.0396 (10)0.0016 (7)
O70.1023 (14)0.0469 (9)0.0338 (8)0.0208 (9)0.0125 (8)0.0127 (6)
O80.0314 (7)0.0433 (7)0.0445 (7)0.0089 (5)0.0073 (5)0.0064 (6)
O90.0519 (8)0.0417 (7)0.0281 (6)0.0155 (6)0.0111 (6)0.0079 (5)
N10.0501 (9)0.0317 (7)0.0264 (7)0.0042 (7)0.0090 (6)0.0011 (6)
N20.0451 (9)0.0215 (7)0.0365 (8)0.0043 (6)0.0084 (6)0.0002 (6)
N30.0512 (10)0.0267 (7)0.0316 (8)0.0033 (7)0.0057 (7)0.0038 (6)
N40.0358 (8)0.0262 (7)0.0247 (7)0.0052 (6)0.0074 (6)0.0019 (5)
C10.0269 (8)0.0235 (7)0.0257 (7)0.0031 (6)0.0029 (6)0.0014 (6)
C20.0270 (8)0.0221 (7)0.0277 (8)0.0031 (6)0.0023 (6)0.0016 (6)
C30.0306 (8)0.0276 (8)0.0235 (7)0.0036 (6)0.0051 (6)0.0011 (6)
C40.0329 (9)0.0243 (8)0.0278 (8)0.0039 (6)0.0057 (6)0.0037 (6)
C50.0303 (8)0.0184 (7)0.0305 (8)0.0036 (6)0.0043 (6)0.0003 (6)
C60.0299 (8)0.0242 (7)0.0252 (8)0.0039 (6)0.0041 (6)0.0018 (6)
C70.0392 (9)0.0241 (7)0.0276 (8)0.0012 (6)0.0049 (7)0.0015 (6)
C80.0314 (8)0.0229 (7)0.0240 (7)0.0036 (6)0.0071 (6)0.0012 (6)
C90.0309 (9)0.0318 (8)0.0299 (8)0.0031 (7)0.0050 (7)0.0083 (7)
C100.0253 (8)0.0356 (9)0.0325 (8)0.0009 (7)0.0065 (6)0.0047 (7)
C110.0316 (8)0.0228 (7)0.0223 (7)0.0038 (6)0.0070 (6)0.0003 (6)
C120.0314 (9)0.0359 (9)0.0348 (9)0.0024 (7)0.0024 (7)0.0134 (7)
C130.0243 (8)0.0412 (10)0.0398 (10)0.0004 (7)0.0048 (7)0.0114 (8)
Geometric parameters (Å, º) top
S1—O81.4317 (14)C1—C61.379 (2)
S1—O91.4417 (13)C1—C21.439 (2)
S1—N31.6019 (17)C1—C71.495 (2)
S1—C81.7692 (16)C2—C31.429 (2)
O1—C21.2874 (19)C3—C41.377 (2)
O2—C71.315 (2)C4—C51.381 (2)
O2—H11.03 (4)C4—H40.88 (2)
O3—C71.209 (2)C5—C61.391 (2)
O4—N21.224 (2)C6—H60.94 (2)
O5—N21.221 (2)C8—C91.383 (2)
O6—N11.220 (2)C8—C131.385 (2)
O7—N11.207 (2)C9—C101.381 (2)
N1—C31.459 (2)C9—H90.94 (2)
N2—C51.454 (2)C10—C111.384 (2)
N3—H3A0.81 (3)C10—H100.96 (2)
N3—H3B0.84 (3)C11—C121.373 (2)
N4—C111.467 (2)C12—C131.388 (2)
N4—H4A0.91 (3)C12—H120.93 (2)
N4—H4B0.93 (3)C13—H130.89 (2)
N4—H4C0.89 (2)
O8—S1—O9117.22 (9)C3—C4—C5118.86 (15)
O8—S1—N3112.63 (9)C3—C4—H4122.1 (15)
O9—S1—N3106.50 (9)C5—C4—H4119.0 (15)
O8—S1—C8107.21 (8)C4—C5—C6121.74 (14)
O9—S1—C8108.05 (8)C4—C5—N2119.18 (15)
N3—S1—C8104.42 (8)C6—C5—N2119.05 (14)
C7—O2—H1107 (2)C1—C6—C5119.35 (15)
O7—N1—O6122.87 (16)C1—C6—H6120.5 (12)
O7—N1—C3119.31 (15)C5—C6—H6120.2 (12)
O6—N1—C3117.82 (15)O3—C7—O2121.66 (16)
O5—N2—O4123.38 (15)O3—C7—C1122.58 (15)
O5—N2—C5118.28 (15)O2—C7—C1115.73 (14)
O4—N2—C5118.35 (14)C9—C8—C13121.07 (15)
S1—N3—H3A114 (2)C9—C8—S1119.84 (12)
S1—N3—H3B113.0 (18)C13—C8—S1119.01 (13)
H3A—N3—H3B118 (3)C10—C9—C8119.29 (15)
C11—N4—H4A112.6 (16)C10—C9—H9120.6 (13)
C11—N4—H4B107.8 (15)C8—C9—H9120.1 (13)
H4A—N4—H4B113 (2)C9—C10—C11119.16 (16)
C11—N4—H4C108.7 (15)C9—C10—H10120.2 (14)
H4A—N4—H4C107 (2)C11—C10—H10120.6 (14)
H4B—N4—H4C108 (2)C12—C11—C10122.13 (15)
C6—C1—C2121.91 (14)C12—C11—N4119.89 (15)
C6—C1—C7118.03 (14)C10—C11—N4117.97 (15)
C2—C1—C7120.02 (14)C11—C12—C13118.59 (16)
O1—C2—C3124.22 (15)C11—C12—H12120.9 (14)
O1—C2—C1120.62 (14)C13—C12—H12120.5 (14)
C3—C2—C1115.14 (13)C8—C13—C12119.74 (17)
C4—C3—C2122.99 (14)C8—C13—H13119.9 (15)
C4—C3—N1116.37 (14)C12—C13—H13120.3 (15)
C2—C3—N1120.64 (14)
C6—C1—C2—O1178.45 (15)C4—C5—C6—C10.2 (3)
C7—C1—C2—O13.9 (2)N2—C5—C6—C1177.72 (15)
C6—C1—C2—C30.0 (2)C6—C1—C7—O35.2 (3)
C7—C1—C2—C3177.62 (15)C2—C1—C7—O3172.54 (18)
O1—C2—C3—C4178.04 (16)C6—C1—C7—O2176.65 (16)
C1—C2—C3—C40.3 (2)C2—C1—C7—O25.6 (2)
O1—C2—C3—N12.0 (3)O8—S1—C8—C9165.23 (14)
C1—C2—C3—N1179.58 (15)O9—S1—C8—C967.57 (16)
O7—N1—C3—C4153.24 (19)N3—S1—C8—C945.52 (16)
O6—N1—C3—C426.3 (3)O8—S1—C8—C1317.90 (17)
O7—N1—C3—C226.7 (3)O9—S1—C8—C13109.30 (15)
O6—N1—C3—C2153.79 (19)N3—S1—C8—C13137.61 (15)
C2—C3—C4—C50.6 (3)C13—C8—C9—C101.4 (3)
N1—C3—C4—C5179.33 (15)S1—C8—C9—C10178.22 (14)
C3—C4—C5—C60.5 (3)C8—C9—C10—C111.1 (3)
C3—C4—C5—N2177.38 (15)C9—C10—C11—C120.3 (3)
O5—N2—C5—C46.8 (3)C9—C10—C11—N4178.77 (15)
O4—N2—C5—C4173.40 (17)C10—C11—C12—C131.3 (3)
O5—N2—C5—C6171.11 (18)N4—C11—C12—C13177.78 (17)
O4—N2—C5—C68.7 (3)C9—C8—C13—C120.4 (3)
C2—C1—C6—C50.1 (2)S1—C8—C13—C12177.27 (15)
C7—C1—C6—C5177.75 (15)C11—C12—C13—C80.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O11.03 (4)1.48 (4)2.462 (2)157 (3)
N3—H3A···O6i0.82 (3)2.53 (2)3.172 (2)137 (2)
N3—H3A···O8ii0.82 (3)2.46 (3)3.090 (2)135 (2)
N3—H3B···O30.84 (3)2.10 (3)2.934 (2)170 (3)
N4—H4A···O1iii0.91 (3)1.93 (3)2.822 (2)166 (3)
N4—H4A···O7iii0.91 (3)2.41 (3)2.870 (2)111.2 (19)
N4—H4B···O2iv0.93 (3)2.01 (3)2.926 (2)172 (2)
N4—H4B···O4v0.93 (3)2.51 (3)2.880 (2)104 (2)
N4—H4C···O9v0.89 (2)1.97 (2)2.867 (2)176 (2)
C4—H4···O50.88 (3)2.42 (3)2.711 (2)100.0 (18)
C9—H9···O7vi0.94 (2)2.57 (2)3.414 (2)150.6 (16)
C10—H10···O8vii0.96 (2)2.43 (2)3.171 (2)133.5 (16)
C13—H13···O80.89 (2)2.53 (2)2.896 (2)105.3 (15)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+2; (iii) x, y+1, z+1; (iv) x, y+1, z+2; (v) x, y+2, z+2; (vi) x, y+1, z+1; (vii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC7H3N2O7+·C6H9N2O2S
Mr400.33
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.0167 (9), 9.137 (1), 12.430 (1)
α, β, γ (°)90.77 (1), 99.736 (9), 95.70 (1)
V3)781.17 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.35 × 0.25 × 0.20
Data collection
DiffractometerNonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3867, 3575, 3080
Rint0.010
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.05
No. of reflections3575
No. of parameters293
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.39, 0.35

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, PROCESS DATA (Gable et al., 1994), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON for Windows (Spek, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O11.03 (4)1.48 (4)2.462 (2)157 (3)
N3—H3A···O6i0.82 (3)2.53 (2)3.172 (2)137 (2)
N3—H3A···O8ii0.82 (3)2.46 (3)3.090 (2)135 (2)
N3—H3B···O30.84 (3)2.10 (3)2.934 (2)170 (3)
N4—H4A···O1iii0.91 (3)1.93 (3)2.822 (2)166 (3)
N4—H4A···O7iii0.91 (3)2.41 (3)2.870 (2)111.2 (19)
N4—H4B···O2iv0.93 (3)2.01 (3)2.926 (2)172 (2)
N4—H4B···O4v0.93 (3)2.51 (3)2.880 (2)104 (2)
N4—H4C···O9v0.89 (2)1.97 (2)2.867 (2)176 (2)
C4—H4···O50.88 (3)2.42 (3)2.711 (2)100.0 (18)
C9—H9···O7vi0.94 (2)2.57 (2)3.414 (2)150.6 (16)
C10—H10···O8vii0.96 (2)2.43 (2)3.171 (2)133.5 (16)
C13—H13···O80.89 (2)2.53 (2)2.896 (2)105.3 (15)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+2; (iii) x, y+1, z+1; (iv) x, y+1, z+2; (v) x, y+2, z+2; (vi) x, y+1, z+1; (vii) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds