Download citation
Download citation
link to html
In the title compound, C18H11Cl2NO2, the succin­imide and cyclo­butene rings are individually planar, with a dihedral angle of 66.02 (14)° between them. The crystal structure is stabilized by C—H...π interactions involving the phenyl rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801015665/ci6063sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801015665/ci6063Isup2.hkl
Contains datablock I

CCDC reference: 175379

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.055
  • wR factor = 0.132
  • Data-to-parameter ratio = 18.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_716 Alert C H...A Unknown or Inconsistent Label ........ \P(B) H4A \P(B) PLAT_716 Alert C H...A Unknown or Inconsistent Label ........ \P(B) H8A \P(B) PLAT_716 Alert C H...A Unknown or Inconsistent Label ........ \P(A) H14A \P(A) PLAT_717 Alert C D...A Unknown or Inconsistent Label ........ \P(B) C4 \P(B) PLAT_717 Alert C D...A Unknown or Inconsistent Label ........ \P(B) C8 \P(B) PLAT_717 Alert C D...A Unknown or Inconsistent Label ........ \P(A) C14 \P(A) PLAT_718 Alert C D-H..A Unknown or Inconsistent label ........ \P(B) C4 H4A \P(B) PLAT_718 Alert C D-H..A Unknown or Inconsistent label ........ \P(B) C8 H8A \P(B) PLAT_718 Alert C D-H..A Unknown or Inconsistent label ........ \P(A) C14 H14A \P(A)
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
9 Alert Level C = Please check

Comment top

The photo-induced reactions of 1-phenyl-3,4-dichloromaleimide with diphenylethylene to give 3-azabicyclo[3.2.0]petanedione derivatives have been intensively investigated. Recently, we have reported the structure of one such derivative, 1,5-dichloro-3,6,6-triphenyl-3-azabicyclo[3.2.0]hepta-2,4-dione, (II) (Usman et al., 2001). In a continuation of this study, we have undertaken the X-ray structure analysis of the title compound, (I), a product obtained by the photoreaction of 1-phenyl-3,4-dichloromaleimide with phenylethylene.

In the succinimide–cyclobutene ring system of (I) (Fig. 1), the five-membered ring is planar compared to a half-chair conformation adopted in the succinimide–cyclobutane ring system of (II) (Usman et al., 2001). The mean plane through the five-membered ring, with N1 deviating by a maximum of -0.032 (2) Å, form a dihedral angle of 66.02 (14)° with the planar cyclobutene ring. The O1 and O2 atoms deviate from the plane of the attached ring by 0.047 (1) and 0.086 (1) Å, respectively. The phenyl ring substituent at C7 is almost coplanar with the cyclobutene [dihedral angle 12.86 (14)°], whereas that at N1 forms a dihedral of 74.83 (12)° with the five-membered ring.

The bond lengths and angles in (I) show normal values (Allen et al., 1987), and agree with those of (II) (Usman et al., 2001), except for the geometry of the cyclobutene ring (Table 1). The C7—C12 bond length of 1.521 (3) Å is slightly longer than that of the typical Csp3—Csp2 bond distance and is considered to be the steric effect of the bulky substituent attached at C7. In the title molecule, C9 and C12 are the chiral center atoms.

In the crystal, the molecular packing is stabilized by C—H···π interactions (Table 2) involving the phenyl rings. In Table 2, π(A) and π(B) denote the centre of gravity of the pheny rings C1–C6 and C13–C18, respectively.

Experimental top

The title compound, (I), was prepared by a photoinduced [2 + 2] cycloaddition reaction. A solution of 1-phenyl-2,3-dichloromaleimide (0.05 M) and phenylethylene (0.2 M) in benzene (40 ml) was photolysed by irradiation of light using a medium-pressure mercury lamp through a Pyrex filter and under constant nitrogen purging. Single crystals suitable for X-ray diffraction were obtained from slow evaporation of petroleum ether–ethyl acetate solution.

Refinement top

After checking their presence in the difference map, all H atoms were geometrically fixed and allowed to ride on the parent C atoms and refined isotropically.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
1,5-Dichloro-3,6-diphenyl-3-azabicyclo[3.2.0]-hept-6-ene-2,4-dione top
Crystal data top
C18H11Cl2NO2Dx = 1.438 Mg m3
Mr = 344.18Melting point: 425K K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.1468 (2) ÅCell parameters from 7131 reflections
b = 14.8464 (5) Åθ = 2.7–28.3°
c = 15.1091 (5) ŵ = 0.42 mm1
β = 97.410 (1)°T = 293 K
V = 1589.75 (9) Å3Slab, colorless
Z = 40.44 × 0.34 × 0.24 mm
F(000) = 704
Data collection top
Siemens SMART CCD area-detector
diffractometer
3864 independent reflections
Radiation source: fine-focus sealed tube2514 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
Detector resolution: 8.33 pixels mm-1θmax = 28.3°, θmin = 2.7°
ω scansh = 98
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1919
Tmin = 0.838, Tmax = 0.907l = 2012
10982 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0416P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max < 0.001
3864 reflectionsΔρmax = 0.38 e Å3
209 parametersΔρmin = 0.43 e Å3
0 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.025 (2)
Crystal data top
C18H11Cl2NO2V = 1589.75 (9) Å3
Mr = 344.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1468 (2) ŵ = 0.42 mm1
b = 14.8464 (5) ÅT = 293 K
c = 15.1091 (5) Å0.44 × 0.34 × 0.24 mm
β = 97.410 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3864 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2514 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 0.907Rint = 0.084
10982 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 0.89Δρmax = 0.38 e Å3
3864 reflectionsΔρmin = 0.43 e Å3
209 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0,88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.30319 (8)0.57153 (4)0.15060 (4)0.0508 (2)
Cl20.05751 (8)0.51319 (5)0.30901 (4)0.0594 (2)
O10.6777 (2)0.64442 (10)0.26076 (10)0.0464 (4)
O20.3266 (2)0.56671 (10)0.48054 (10)0.0486 (4)
N10.5330 (2)0.61295 (11)0.38447 (11)0.0328 (4)
C10.6444 (3)0.39557 (14)0.21529 (13)0.0347 (5)
C20.7193 (3)0.43853 (15)0.14621 (15)0.0459 (6)
H2A0.67000.49350.12480.055*
C30.8669 (4)0.3997 (2)0.10929 (18)0.0600 (7)
H3A0.91580.42840.06260.072*
C40.9420 (4)0.3192 (2)0.14115 (19)0.0664 (8)
H4A1.04370.29420.11720.080*
C50.8667 (4)0.27549 (19)0.20838 (19)0.0623 (7)
H5A0.91640.22040.22900.075*
C60.7183 (3)0.31244 (15)0.24559 (15)0.0470 (6)
H6A0.66740.28210.29080.056*
C70.4951 (3)0.43752 (12)0.25893 (13)0.0333 (4)
C80.3941 (3)0.41459 (14)0.32373 (15)0.0405 (5)
H8A0.38300.36110.35470.049*
C90.3044 (3)0.50597 (14)0.32907 (14)0.0362 (5)
C100.3805 (3)0.56330 (13)0.40906 (14)0.0345 (5)
C110.5609 (3)0.60431 (13)0.29577 (13)0.0327 (4)
C120.4226 (3)0.53394 (13)0.25349 (13)0.0325 (4)
C130.6479 (3)0.66940 (13)0.44723 (12)0.0333 (4)
C140.5749 (4)0.74981 (15)0.47258 (17)0.0513 (6)
H14A0.45480.76830.44850.062*
C150.6841 (5)0.80231 (18)0.53459 (19)0.0650 (8)
H15A0.63610.85640.55310.078*
C160.8616 (4)0.7760 (2)0.56919 (17)0.0636 (8)
H16A0.93380.81210.61070.076*
C170.9337 (4)0.69586 (19)0.54259 (16)0.0557 (7)
H17A1.05480.67800.56590.067*
C180.8260 (3)0.64218 (15)0.48137 (14)0.0413 (5)
H18A0.87370.58790.46330.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0509 (4)0.0541 (4)0.0439 (3)0.0078 (3)0.0069 (2)0.0023 (3)
Cl20.0280 (3)0.0772 (5)0.0731 (5)0.0066 (3)0.0064 (3)0.0184 (3)
O10.0522 (10)0.0444 (9)0.0452 (9)0.0121 (8)0.0154 (7)0.0001 (7)
O20.0508 (10)0.0531 (10)0.0452 (9)0.0093 (8)0.0195 (7)0.0088 (7)
N10.0346 (9)0.0293 (9)0.0350 (9)0.0044 (7)0.0070 (7)0.0036 (7)
C10.0368 (11)0.0275 (10)0.0395 (11)0.0006 (8)0.0038 (8)0.0092 (8)
C20.0531 (15)0.0357 (12)0.0508 (14)0.0008 (10)0.0146 (11)0.0039 (10)
C30.0591 (17)0.0685 (18)0.0568 (16)0.0032 (14)0.0241 (12)0.0161 (14)
C40.0579 (18)0.078 (2)0.0649 (18)0.0177 (15)0.0121 (13)0.0283 (16)
C50.0688 (19)0.0518 (15)0.0636 (17)0.0269 (14)0.0013 (13)0.0164 (13)
C60.0580 (15)0.0370 (12)0.0453 (13)0.0055 (11)0.0035 (10)0.0033 (10)
C70.0372 (11)0.0256 (10)0.0372 (11)0.0012 (8)0.0054 (8)0.0037 (8)
C80.0459 (13)0.0293 (11)0.0480 (13)0.0047 (9)0.0121 (10)0.0008 (9)
C90.0282 (10)0.0374 (11)0.0440 (12)0.0034 (9)0.0086 (8)0.0066 (9)
C100.0318 (11)0.0317 (11)0.0408 (12)0.0010 (8)0.0078 (8)0.0016 (9)
C110.0359 (11)0.0258 (10)0.0368 (11)0.0044 (8)0.0066 (8)0.0028 (8)
C120.0323 (11)0.0303 (10)0.0346 (10)0.0023 (8)0.0030 (8)0.0010 (8)
C130.0394 (12)0.0304 (10)0.0309 (10)0.0060 (9)0.0073 (8)0.0020 (8)
C140.0559 (16)0.0394 (13)0.0571 (15)0.0040 (11)0.0021 (11)0.0094 (11)
C150.087 (2)0.0429 (15)0.0659 (17)0.0083 (14)0.0124 (15)0.0236 (13)
C160.079 (2)0.0665 (19)0.0457 (15)0.0360 (16)0.0079 (13)0.0167 (13)
C170.0433 (14)0.0727 (19)0.0495 (14)0.0180 (13)0.0001 (10)0.0032 (13)
C180.0393 (12)0.0427 (13)0.0429 (12)0.0044 (10)0.0092 (9)0.0012 (10)
Geometric parameters (Å, º) top
Cl1—C121.765 (2)C7—C81.333 (3)
Cl2—C91.755 (2)C7—C121.521 (3)
O1—C111.202 (2)C8—C91.507 (3)
O2—C101.194 (2)C8—H8A0.93
N1—C111.386 (2)C9—C101.520 (3)
N1—C101.404 (2)C9—C121.562 (3)
N1—C131.441 (3)C11—C121.521 (3)
C1—C21.388 (3)C13—C181.371 (3)
C1—C61.396 (3)C13—C141.377 (3)
C1—C71.464 (3)C14—C151.381 (4)
C2—C31.382 (3)C14—H14A0.93
C2—H2A0.93C15—C161.366 (4)
C3—C41.372 (4)C15—H15A0.93
C3—H3A0.93C16—C171.376 (4)
C4—C51.372 (4)C16—H16A0.93
C4—H4A0.93C17—C181.378 (3)
C5—C61.377 (3)C17—H17A0.93
C5—H5A0.93C18—H18A0.93
C6—H6A0.93
C11—N1—C10114.88 (17)C12—C9—Cl2118.95 (15)
C11—N1—C13123.30 (16)O2—C10—N1124.69 (19)
C10—N1—C13121.82 (16)O2—C10—C9128.22 (19)
C2—C1—C6119.13 (19)N1—C10—C9107.09 (16)
C2—C1—C7121.15 (19)O1—C11—N1125.1 (2)
C6—C1—C7119.68 (19)O1—C11—C12127.31 (19)
C3—C2—C1120.0 (2)N1—C11—C12107.61 (16)
C3—C2—H2A120.0C7—C12—C11115.17 (17)
C1—C2—H2A120.0C7—C12—C985.58 (14)
C4—C3—C2120.4 (2)C11—C12—C9105.01 (16)
C4—C3—H3A119.8C7—C12—Cl1117.90 (15)
C2—C3—H3A119.8C11—C12—Cl1111.52 (14)
C3—C4—C5119.9 (2)C9—C12—Cl1118.86 (14)
C3—C4—H4A120.0C18—C13—C14121.2 (2)
C5—C4—H4A120.0C18—C13—N1119.94 (18)
C4—C5—C6120.7 (2)C14—C13—N1118.9 (2)
C4—C5—H5A119.7C13—C14—C15118.5 (3)
C6—C5—H5A119.7C13—C14—H14A120.8
C5—C6—C1119.8 (2)C15—C14—H14A120.8
C5—C6—H6A120.1C16—C15—C14120.9 (2)
C1—C6—H6A120.1C16—C15—H15A119.5
C8—C7—C1135.83 (19)C14—C15—H15A119.5
C8—C7—C1293.84 (16)C15—C16—C17120.0 (2)
C1—C7—C12129.73 (17)C15—C16—H16A120.0
C7—C8—C994.81 (17)C17—C16—H16A120.0
C7—C8—H8A132.6C16—C17—C18119.9 (3)
C9—C8—H8A132.6C16—C17—H17A120.1
C8—C9—C10115.81 (18)C18—C17—H17A120.1
C8—C9—C1285.76 (15)C13—C18—C17119.5 (2)
C10—C9—C12105.10 (16)C13—C18—H18A120.2
C8—C9—Cl2118.11 (15)C17—C18—H18A120.2
C10—C9—Cl2110.61 (13)
C6—C1—C2—C31.0 (4)C1—C7—C12—C1167.8 (3)
C7—C1—C2—C3176.6 (2)C8—C7—C12—C90.26 (17)
C1—C2—C3—C40.7 (4)C1—C7—C12—C9172.4 (2)
C2—C3—C4—C51.8 (4)C8—C7—C12—Cl1120.72 (17)
C3—C4—C5—C61.2 (4)C1—C7—C12—Cl167.2 (3)
C4—C5—C6—C10.6 (4)O1—C11—C12—C788.5 (3)
C2—C1—C6—C51.7 (3)N1—C11—C12—C789.78 (19)
C7—C1—C6—C5176.0 (2)O1—C11—C12—C9179.3 (2)
C2—C1—C7—C8178.6 (3)N1—C11—C12—C92.4 (2)
C6—C1—C7—C83.8 (4)O1—C11—C12—Cl149.3 (3)
C2—C1—C7—C1212.7 (3)N1—C11—C12—Cl1132.40 (14)
C6—C1—C7—C12164.9 (2)C8—C9—C12—C70.23 (15)
C1—C7—C8—C9171.5 (2)C10—C9—C12—C7115.84 (17)
C12—C7—C8—C90.27 (18)Cl2—C9—C12—C7119.69 (16)
C7—C8—C9—C10105.0 (2)C8—C9—C12—C11114.66 (17)
C7—C8—C9—C120.27 (17)C10—C9—C12—C110.9 (2)
C7—C8—C9—Cl2120.45 (17)Cl2—C9—C12—C11125.42 (15)
C11—N1—C10—O2174.8 (2)C8—C9—C12—Cl1119.79 (16)
C13—N1—C10—O24.2 (3)C10—C9—C12—Cl1124.61 (16)
C11—N1—C10—C96.0 (2)Cl2—C9—C12—Cl10.1 (2)
C13—N1—C10—C9175.04 (17)C11—N1—C13—C1875.6 (3)
C8—C9—C10—O290.5 (3)C10—N1—C13—C18105.5 (2)
C12—C9—C10—O2176.9 (2)C11—N1—C13—C14105.1 (2)
Cl2—C9—C10—O247.3 (3)C10—N1—C13—C1473.8 (3)
C8—C9—C10—N188.7 (2)C18—C13—C14—C151.0 (3)
C12—C9—C10—N13.9 (2)N1—C13—C14—C15178.2 (2)
Cl2—C9—C10—N1133.50 (15)C13—C14—C15—C160.9 (4)
C10—N1—C11—O1176.3 (2)C14—C15—C16—C170.3 (4)
C13—N1—C11—O12.7 (3)C15—C16—C17—C180.3 (4)
C10—N1—C11—C125.4 (2)C14—C13—C18—C170.4 (3)
C13—N1—C11—C12175.68 (17)N1—C13—C18—C17178.83 (18)
C8—C7—C12—C11104.3 (2)C16—C17—C18—C130.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···π(B)i0.932.743.618 (3)159
C8—H8A···π(B)ii0.932.713.528 (2)147
C14—H14A···π(A)iii0.932.763.612 (3)153
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H11Cl2NO2
Mr344.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.1468 (2), 14.8464 (5), 15.1091 (5)
β (°) 97.410 (1)
V3)1589.75 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.44 × 0.34 × 0.24
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.838, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
10982, 3864, 2514
Rint0.084
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.132, 0.89
No. of reflections3864
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.43

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
Cl1—C121.765 (2)C1—C71.464 (3)
Cl2—C91.755 (2)C7—C81.333 (3)
O1—C111.202 (2)C7—C121.521 (3)
O2—C101.194 (2)C8—C91.507 (3)
N1—C111.386 (2)C9—C101.520 (3)
N1—C131.441 (3)C9—C121.562 (3)
C12—C9—Cl2118.95 (15)C9—C12—Cl1118.86 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···π(B)i0.932.743.618 (3)158.7
C8—H8A···π(B)ii0.932.713.528 (2)147.1
C14—H14A···π(A)iii0.932.763.612 (3)152.7
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds