Download citation
Download citation
link to html
The title compound, C22H36N2O, contains piperidine as a major constituent. The two piperidine rings attached to the phenyl ring are in chair conformations. The structure is stabilized by van der Waals forces as well as O—H...N intramolecular hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801013836/ci6052sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801013836/ci6052Isup2.hkl
Contains datablock I

CCDC reference: 172219

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.057
  • wR factor = 0.176
  • Data-to-parameter ratio = 16.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Piperidine derivatives are found to possess pharmacological activities and generally form an essential part of the molecular structure of important drugs. For example, the piperidine ring is a feature of antihistaminic agents, oral anesthetics (McElvain, 1927) and narcotic analgesics (Lu et al., 1991). Clebopride, a 1,4-disubstituted piperidine, is used clinically to prevent post-operative vomiting, to speed up gastric emptying before anesthesia or to facilitate radiological evaluation and to correct a variety of disturbances of gastrointestinal function (Robinson, 1973). Several 2,6-disubstituted piperidines are found to be useful as tranquilizers (Bochringer & Soehne, 1961) and possess hypotensive activity. In addition, it has also a combination of stimulant and depressant effects on the central nervous system (Ganellin & Spickett, 1965), as well as bactericidal, fungicidal and herbicidal activities (Mobio et al., 1990). Many piperidine derivatives also form the skeleton of several alkaloids (Hootele et al., 1980). This compound also acts as a bridging molecule in polymetallic complexes. This property has application in the design of novel magnetic and electronic solid-state materials. Also, the complexes adopt the role of polymetallic sites in biological processes (Willet et al., 1985; Marcus & Sutin, 1985). Synthetic binuclear ligands and their complexes can serve as suitable models for the natural binuclear metal centers when they mimic some physical and chemical properties of the protein site and thereby provide an improved understanding of the biological analogue (Fenton et al., 1982). In view of this, the title compound, (I), was synthesized and characterized by X-ray diffraction analysis.

The piperidine ring system offers a wide variety of conformational flexibility such as chair, boat and twist conformation (Hofer, 1976; Potapov, 1979), though the chair or slightly distorted chair conformations has been found to be the most favoured (Mulekar & Berlin, 1989). As in the related compound 2,6-bis(N-methylenepiperidino)-4-nitrophenol (Shanmuga Sundra Raj et al., 1994), the piperidine rings B and C adopt chair conformation [in the notation of Cremer and Pople (1975): QT = 0.574 (2) Å, q2 = 0.014 (2), q3 = -0.573 (2) and ϕ2 = -128 (9)° for ring B; QT = 0.561 (2) Å, q2 = 0.027 (2), q3 = 0.560 (2) and ϕ2 = 28 (5)° for ring C]. The mean bond length for the phenyl ring is 1.392 Å. In the tert-butyl system, C24 is in a (-)synclinal position with respect to the C4—C5 bond. There is a an O—H···N intramolecular hydrogen bond [H21···N15 = 1.76 (2) Å, O21···N15 = 2.649 (2) Å and angle at H21 = 156 (2)°].

Experimental top

To a 250 ml round-bottomed flask, methylphenol (5.4 g, 0.05 mol), bromophenol (8.6 g, 0.05 mol) in ethanol (150 ml) and piperidine (8.7 g, 0.1 mol) were added. The solution was stirred as formaldehyde (3.0 g, 0.1 mol) was added slowly. The solution was refluxed for 24 h, during which time 2.5 ml formaldehyde was added at time intervals of 8 h. The ethanol was evaporated under vacuum, the resulting oil washed with sodium carbonate solution, extracted with dimethyl ether and evaporated to yield a colourless solid (m.p. 393 K). Crystals were obtained by the slow evaporation of an acetone solution of the compound.

Refinement top

The phenol H atom was located from a difference map and refined freely. H atoms bonded to C atoms were placed in calculated positions, refined using a riding model and given an isotropic displacement parameter equal to 1.2 times the equivalent isotropic displacement parameter of the CH and CH2 groups, and 1.5 times of the equivalent isotropic displacement parameter of the CH3 groups.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: SDP (Frenz, 1978); data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: PARST97 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 30% probability level. H atoms have been omitted for clarity.
4-tert-Butyl-2,6-bis(piperidinomethyl)phenol top
Crystal data top
C22H36N2OZ = 2
Mr = 344.53F(000) = 380
Triclinic, P1Dx = 1.070 Mg m3
a = 10.540 (2) ÅCu Kα radiation, λ = 1.5418 Å
b = 12.153 (3) ÅCell parameters from 25 reflections
c = 9.786 (2) Åθ = 15–30°
α = 106.20 (3)°µ = 0.50 mm1
β = 116.89 (3)°T = 293 K
γ = 87.18 (4)°Needle, colourless
V = 1069.2 (4) Å30.40 × 0.20 × 0.20 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.017
Radiation source: fine-focus sealed tubeθmax = 69.9°, θmin = 4.7°
Graphite monochromatorh = 1211
ω–2θ scansk = 1414
4237 measured reflectionsl = 011
3904 independent reflections3 standard reflections every 120 min
3680 reflections with I > 2σ(I) intensity decay: <1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.176 w = 1/[σ2(Fo2) + (0.0939P)2 + 0.2502P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3904 reflectionsΔρmax = 0.27 e Å3
234 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.022 (4)
Crystal data top
C22H36N2Oγ = 87.18 (4)°
Mr = 344.53V = 1069.2 (4) Å3
Triclinic, P1Z = 2
a = 10.540 (2) ÅCu Kα radiation
b = 12.153 (3) ŵ = 0.50 mm1
c = 9.786 (2) ÅT = 293 K
α = 106.20 (3)°0.40 × 0.20 × 0.20 mm
β = 116.89 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.017
4237 measured reflections3 standard reflections every 120 min
3904 independent reflections intensity decay: <1%
3680 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.176H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.27 e Å3
3904 reflectionsΔρmin = 0.18 e Å3
234 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.72334 (16)0.00083 (13)0.45577 (18)0.0461 (4)
C20.82952 (16)0.01431 (13)0.60038 (18)0.0465 (4)
C30.80763 (16)0.10284 (13)0.65378 (18)0.0477 (4)
H30.87740.11110.75070.057*
C40.68568 (16)0.17951 (13)0.56811 (18)0.0461 (4)
C50.58284 (16)0.16262 (13)0.42497 (18)0.0495 (4)
H50.49990.21250.36540.059*
C60.59874 (17)0.07498 (13)0.36760 (18)0.0483 (4)
C70.4822 (2)0.05780 (15)0.2142 (2)0.0613 (5)
H7A0.41930.00450.24000.074*
H7B0.52550.02290.16570.074*
N80.39737 (13)0.16342 (11)0.09812 (15)0.0485 (3)
C90.48005 (19)0.23846 (18)0.0321 (2)0.0646 (5)
H9A0.56350.25570.11850.078*
H9B0.51270.19890.02130.078*
C100.3937 (3)0.34948 (19)0.0855 (3)0.0799 (6)
H10A0.36700.39200.03070.096*
H10B0.45140.39630.12910.096*
C110.2602 (2)0.32599 (19)0.2207 (2)0.0737 (6)
H11A0.28630.29370.28560.088*
H11B0.20080.39740.28840.088*
C120.1787 (2)0.24332 (19)0.1528 (2)0.0703 (5)
H12A0.13970.28090.10280.084*
H12B0.09940.22200.23900.084*
C130.27125 (19)0.13614 (17)0.0310 (2)0.0618 (5)
H13A0.30150.09390.08350.074*
H13B0.21580.08720.01400.074*
C140.97089 (17)0.05913 (15)0.6921 (2)0.0569 (4)
H14A1.01180.06120.80380.068*
H14B1.03610.02360.65130.068*
N150.95811 (13)0.17729 (11)0.68092 (15)0.0484 (3)
C160.89039 (18)0.24444 (16)0.7748 (2)0.0581 (4)
H16A0.94900.24980.88690.070*
H16B0.79810.20590.74040.070*
C170.8712 (2)0.36361 (17)0.7546 (3)0.0782 (6)
H17A0.82780.40720.81930.094*
H17B0.80770.35850.64360.094*
C181.0137 (2)0.42514 (18)0.8046 (3)0.0864 (7)
H18A0.99910.49950.78390.104*
H18B1.07390.43780.91840.104*
C191.0858 (2)0.35312 (19)0.7117 (3)0.0784 (6)
H19A1.03080.34860.59940.094*
H19B1.18010.38960.74970.094*
C201.09879 (18)0.23394 (16)0.7303 (2)0.0608 (5)
H20A1.14120.18860.66570.073*
H20B1.16130.23800.84120.073*
O210.74069 (14)0.08386 (10)0.39626 (14)0.0593 (4)
H210.817 (3)0.134 (2)0.486 (3)0.086 (7)*
C220.66688 (18)0.28185 (15)0.6221 (2)0.0544 (4)
C230.7545 (4)0.2597 (3)0.8016 (3)0.1203 (12)
H23A0.72540.19280.85600.180*
H23B0.85390.24740.83090.180*
H23C0.73970.32500.83140.180*
C240.5126 (2)0.3062 (3)0.5805 (4)0.1067 (10)
H24A0.50600.36090.63190.160*
H24B0.45780.33720.46670.160*
H24C0.47600.23620.61650.160*
C250.7177 (4)0.3855 (2)0.5399 (5)0.1194 (12)
H25A0.70990.45000.57500.179*
H25B0.81550.36910.56620.179*
H25C0.65990.40340.42620.179*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0499 (8)0.0419 (8)0.0464 (8)0.0039 (6)0.0207 (7)0.0149 (6)
C20.0424 (8)0.0444 (8)0.0490 (8)0.0034 (6)0.0176 (6)0.0136 (6)
C30.0435 (8)0.0507 (8)0.0443 (8)0.0062 (6)0.0135 (6)0.0188 (6)
C40.0447 (8)0.0475 (8)0.0466 (8)0.0050 (6)0.0189 (6)0.0179 (6)
C50.0437 (8)0.0481 (8)0.0487 (8)0.0018 (6)0.0132 (7)0.0151 (7)
C60.0480 (8)0.0464 (8)0.0438 (8)0.0034 (6)0.0148 (7)0.0140 (6)
C70.0632 (10)0.0527 (9)0.0507 (9)0.0001 (8)0.0079 (8)0.0204 (7)
N80.0433 (7)0.0533 (7)0.0420 (7)0.0033 (5)0.0124 (5)0.0161 (6)
C90.0490 (9)0.0801 (12)0.0575 (10)0.0105 (8)0.0196 (8)0.0181 (9)
C100.0879 (15)0.0713 (13)0.0655 (12)0.0175 (11)0.0296 (11)0.0091 (10)
C110.0752 (13)0.0779 (13)0.0511 (10)0.0097 (10)0.0207 (9)0.0054 (9)
C120.0489 (9)0.0932 (14)0.0537 (10)0.0060 (9)0.0126 (8)0.0160 (9)
C130.0512 (9)0.0722 (11)0.0501 (9)0.0107 (8)0.0112 (7)0.0220 (8)
C140.0428 (8)0.0535 (9)0.0663 (10)0.0027 (7)0.0165 (7)0.0198 (8)
N150.0436 (7)0.0474 (7)0.0517 (7)0.0028 (5)0.0203 (6)0.0121 (6)
C160.0483 (9)0.0649 (10)0.0572 (9)0.0001 (7)0.0242 (7)0.0108 (8)
C170.0599 (11)0.0563 (11)0.0958 (15)0.0037 (8)0.0271 (10)0.0033 (10)
C180.0737 (13)0.0519 (11)0.1082 (18)0.0070 (9)0.0269 (12)0.0092 (11)
C190.0746 (13)0.0726 (13)0.0852 (14)0.0203 (10)0.0314 (11)0.0233 (11)
C200.0495 (9)0.0633 (11)0.0681 (11)0.0077 (7)0.0290 (8)0.0107 (8)
O210.0642 (7)0.0542 (7)0.0538 (7)0.0056 (6)0.0164 (6)0.0239 (5)
C220.0516 (9)0.0558 (9)0.0590 (9)0.0021 (7)0.0213 (7)0.0275 (8)
C230.135 (2)0.132 (2)0.0777 (16)0.043 (2)0.0102 (16)0.0637 (16)
C240.0648 (13)0.130 (2)0.157 (3)0.0051 (13)0.0445 (15)0.098 (2)
C250.188 (3)0.0670 (14)0.175 (3)0.0439 (17)0.130 (3)0.0631 (18)
Geometric parameters (Å, º) top
C1—O211.3715 (18)C14—H14A0.97
C1—C61.392 (2)C14—H14B0.97
C1—C21.400 (2)N15—C161.462 (2)
C2—C31.390 (2)N15—C201.474 (2)
C2—C141.515 (2)C16—C171.507 (3)
C3—C41.389 (2)C16—H16A0.97
C3—H30.93C16—H16B0.97
C4—C51.394 (2)C17—C181.516 (3)
C4—C221.534 (2)C17—H17A0.97
C5—C61.383 (2)C17—H17B0.97
C5—H50.93C18—C191.512 (3)
C6—C71.512 (2)C18—H18A0.97
C7—N81.455 (2)C18—H18B0.97
C7—H7A0.97C19—C201.502 (3)
C7—H7B0.97C19—H19A0.97
N8—C91.453 (2)C19—H19B0.97
N8—C131.464 (2)C20—H20A0.97
C9—C101.510 (3)C20—H20B0.97
C9—H9A0.97O21—H210.95 (3)
C9—H9B0.97C22—C241.510 (3)
C10—C111.516 (3)C22—C251.510 (3)
C10—H10A0.97C22—C231.518 (3)
C10—H10B0.97C23—H23A0.96
C11—C121.499 (3)C23—H23B0.96
C11—H11A0.97C23—H23C0.96
C11—H11B0.97C24—H24A0.96
C12—C131.509 (3)C24—H24B0.96
C12—H12A0.97C24—H24C0.96
C12—H12B0.97C25—H25A0.96
C13—H13A0.97C25—H25B0.96
C13—H13B0.97C25—H25C0.96
C14—N151.465 (2)
O21—C1—C6118.56 (14)C2—C14—H14B108.9
O21—C1—C2120.97 (14)H14A—C14—H14B107.7
C6—C1—C2120.47 (14)C16—N15—C14111.63 (14)
C3—C2—C1118.62 (14)C16—N15—C20110.76 (13)
C3—C2—C14119.70 (14)C14—N15—C20110.78 (14)
C1—C2—C14121.52 (14)N15—C16—C17110.76 (16)
C2—C3—C4122.59 (14)N15—C16—H16A109.5
C2—C3—H3118.7C17—C16—H16A109.5
C4—C3—H3118.7N15—C16—H16B109.5
C3—C4—C5116.74 (14)C17—C16—H16B109.5
C3—C4—C22122.24 (14)H16A—C16—H16B108.1
C5—C4—C22120.95 (14)C16—C17—C18110.61 (17)
C6—C5—C4122.89 (14)C16—C17—H17A109.5
C6—C5—H5118.6C18—C17—H17A109.5
C4—C5—H5118.6C16—C17—H17B109.5
C5—C6—C1118.68 (14)C18—C17—H17B109.5
C5—C6—C7120.99 (15)H17A—C17—H17B108.1
C1—C6—C7120.31 (14)C19—C18—C17109.48 (17)
N8—C7—C6113.98 (14)C19—C18—H18A109.8
N8—C7—H7A108.8C17—C18—H18A109.8
C6—C7—H7A108.8C19—C18—H18B109.8
N8—C7—H7B108.8C17—C18—H18B109.8
C6—C7—H7B108.8H18A—C18—H18B108.2
H7A—C7—H7B107.7C20—C19—C18111.11 (18)
C9—N8—C7111.54 (14)C20—C19—H19A109.4
C9—N8—C13109.86 (14)C18—C19—H19A109.4
C7—N8—C13109.93 (14)C20—C19—H19B109.4
N8—C9—C10111.82 (16)C18—C19—H19B109.4
N8—C9—H9A109.3H19A—C19—H19B108.0
C10—C9—H9A109.3N15—C20—C19111.15 (16)
N8—C9—H9B109.3N15—C20—H20A109.4
C10—C9—H9B109.3C19—C20—H20A109.4
H9A—C9—H9B107.9N15—C20—H20B109.4
C9—C10—C11110.87 (18)C19—C20—H20B109.4
C9—C10—H10A109.5H20A—C20—H20B108.0
C11—C10—H10A109.5C1—O21—H21103.3 (14)
C9—C10—H10B109.5C24—C22—C25110.0 (2)
C11—C10—H10B109.5C24—C22—C23107.6 (2)
H10A—C10—H10B108.1C25—C22—C23108.3 (2)
C12—C11—C10109.59 (16)C24—C22—C4111.08 (15)
C12—C11—H11A109.8C25—C22—C4108.15 (15)
C10—C11—H11A109.8C23—C22—C4111.65 (16)
C12—C11—H11B109.8C22—C23—H23A109.5
C10—C11—H11B109.8C22—C23—H23B109.5
H11A—C11—H11B108.2H23A—C23—H23B109.5
C11—C12—C13112.08 (16)C22—C23—H23C109.5
C11—C12—H12A109.2H23A—C23—H23C109.5
C13—C12—H12A109.2H23B—C23—H23C109.5
C11—C12—H12B109.2C22—C24—H24A109.5
C13—C12—H12B109.2C22—C24—H24B109.5
H12A—C12—H12B107.9H24A—C24—H24B109.5
N8—C13—C12111.72 (16)C22—C24—H24C109.5
N8—C13—H13A109.3H24A—C24—H24C109.5
C12—C13—H13A109.3H24B—C24—H24C109.5
N8—C13—H13B109.3C22—C25—H25A109.5
C12—C13—H13B109.3C22—C25—H25B109.5
H13A—C13—H13B107.9H25A—C25—H25B109.5
N15—C14—C2113.29 (13)C22—C25—H25C109.5
N15—C14—H14A108.9H25A—C25—H25C109.5
C2—C14—H14A108.9H25B—C25—H25C109.5
N15—C14—H14B108.9
O21—C1—C2—C3178.83 (14)C9—C10—C11—C1253.1 (3)
C6—C1—C2—C30.1 (2)C10—C11—C12—C1352.5 (2)
O21—C1—C2—C143.6 (2)C9—N8—C13—C1257.9 (2)
C6—C1—C2—C14175.14 (15)C7—N8—C13—C12179.00 (16)
C1—C2—C3—C41.1 (2)C11—C12—C13—N855.8 (2)
C14—C2—C3—C4174.30 (15)C3—C2—C14—N15149.72 (15)
C2—C3—C4—C51.1 (2)C1—C2—C14—N1535.1 (2)
C2—C3—C4—C22175.76 (14)C2—C14—N15—C1672.54 (18)
C3—C4—C5—C60.3 (2)C2—C14—N15—C20163.52 (14)
C22—C4—C5—C6176.62 (15)C14—N15—C16—C17176.98 (14)
C4—C5—C6—C10.5 (3)C20—N15—C16—C1759.07 (19)
C4—C5—C6—C7178.09 (16)N15—C16—C17—C1858.1 (2)
O21—C1—C6—C5178.09 (14)C16—C17—C18—C1955.3 (3)
C2—C1—C6—C50.6 (2)C17—C18—C19—C2054.7 (3)
O21—C1—C6—C73.3 (2)C16—N15—C20—C1958.3 (2)
C2—C1—C6—C7178.00 (15)C14—N15—C20—C19177.27 (16)
C5—C6—C7—N830.3 (2)C18—C19—C20—N1556.4 (2)
C1—C6—C7—N8151.13 (16)C3—C4—C22—C24145.9 (2)
C6—C7—N8—C969.1 (2)C5—C4—C22—C2437.4 (3)
C6—C7—N8—C13168.78 (15)C3—C4—C22—C2593.3 (2)
C7—N8—C9—C10178.63 (15)C5—C4—C22—C2583.4 (2)
C13—N8—C9—C1059.2 (2)C3—C4—C22—C2325.7 (3)
N8—C9—C10—C1157.6 (2)C5—C4—C22—C23157.5 (2)

Experimental details

Crystal data
Chemical formulaC22H36N2O
Mr344.53
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.540 (2), 12.153 (3), 9.786 (2)
α, β, γ (°)106.20 (3), 116.89 (3), 87.18 (4)
V3)1069.2 (4)
Z2
Radiation typeCu Kα
µ (mm1)0.50
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4237, 3904, 3680
Rint0.017
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.176, 1.09
No. of reflections3904
No. of parameters234
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.18

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), SDP (Frenz, 1978), CAD-4 Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), PARST97 (Nardelli, 1995).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds