Download citation
Download citation
link to html
In the title compound, C6H16N4O22+·2NO3 , the diprotonated argininium mol­ecule is linked by a strong O—H...O [2.653 (7) Å] hydrogen bond to the nitrate anion. The single-bonded O atom of the carboxyl group exhibits a very unusual cis conformation with respect to the α-amino N atom. Chelated three-centered hydrogen bonds are observed in the case of the Nα and N[epsilon] atoms with the nitrate anions. The argininium mol­ecules are connected by type A, B and D interactions through nitrate anions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801013460/ci6051sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801013460/ci6051Isup2.hkl
Contains datablock I

CCDC reference: 172217

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.070
  • wR factor = 0.218
  • Data-to-parameter ratio = 7.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 68.00 From the CIF: _reflns_number_total 1284 Count of symmetry unique reflns 1302 Completeness (_total/calc) 98.62% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

L-Arginine is one of the essential amino acids widely distributed in biological substances. L-Arginine phosphate monohydrate is found to exhibit interesting non-linear optical properties (Jiang et al., 1983). The strong basicity of the guanidyl group are responsible for the functions in living matter (Aoki et al., 1971). The crystal structures of L-arginine dihydrate (Karle & Karle, 1964), L-arginine hydrochloride monohydrate (Dow et al., 1970), L-arginine phosphate monohydrate (Aoki et al., 1971), L-arginine perchlorate (Monaco et al., 1987; Srinivasan & Rajaram, 1997) and L-arginine diarsenate (Zalkin et al., 1989) have been reported. In the present study, the crystal structure of L-arginine dinitrate, (I), was undertaken to study conformational aspects.

The conformation of the arginine molecule may be characterized by three planar groups: (i) the carboxyl group, (ii) the side chain C atoms consisting of the α-, β-, γ- and δ-carbon (C12, C13, C14 and C15) and (iii) the guanidyl group including the δ-carbon atom (C15, N4, C16, N5 and N6) (Aoki et al., 1971). The conformation of the single-bonded carboxyl O atom is cis with respect to the amino N atom [-29.7 (10)°] for the diprotonated argininium molecule. In general, this conformation is found to be trans, whereas the present structure is different from earlier studies, viz. L-valine hydrochloride (Koetzle et al., 1974), DL-valine hydrochloride (Di Blasio et al., 1977), L-arginine diarsenate (Zalkin et al., 1989), bis(DL-methioninium) sulfate (Srinivasan et al., 2001), tri(L-isoleucinium) sulfate bisulfate (Sridhar et al., 2001) and L-valine L-valinium perchlorate monohydrate (Pandiarajan et al., 2001).

The side-chain conformation angle χ1 has a gauche II form [-62.5 (8)°], while χ2 and χ3 are in the trans form [-168.6 (6) and 178.0 (6)°] for the argininium molecule (Fig. 1). The other conformation angle, which has guanidyl group at the end of the residue, χ4 is [-92.9 (10)°] as expected and χ51 and χ52 are 6.6 (14) and -172.6 (8)°, respectively. These conformational angles are very similar to L-arginine diarsenate, except for χ4 which is 148.8°. The argininium molecule, in the present study, is in a slightly folded conformation.

The guanidyl group is protonated and exists as a guanidinium ion. The three C—N bonds in this group are nearly equal in length with an average value of 1.313 (9) Å. The three N—C—N angles are very close to 120°, confirming the planarity of the guanidyl group. Like other arginine molecules, the C15 atom is only slightly displaced [0.15 (2) Å] from the plane of the guanidyl group. The two crystallographically independent nitrate anions have similar geometries.

The carboxyl O atom of the diprotonated argininium cation is linked through a strong O—H···O hydrogen bond [2.653 (7) Å] with the nitrate anion (Fig. 2 and Table 2), while the amino-N and the N atoms of guanidyl group are linked through normal hydrogen bonds with the two nitrate anions. Chelated three-centered hydrogen bonds are observed in the case of the Nα and Nε atoms (N3—H3C···O5ii and N3—H3C···O4ii, and N4—H4···O3iii and N4—H4···O2iii; Jeffrey & Saenger, 1991). The O atom (O2) of nitrate anion links the carboxyl O atom (O1B), Nε and Nη1 (N5) through a chain along the z axis. The O atoms of the second nitrate anion (O5 and O4) links the α-amino N atom and Nη2 (N6) through a chain along the x axis. The intermolecular guanidyl–nitrate interactions are observed as (i) type D between N atoms ε, η1 with O2; (ii) type A between N atoms η1, η2 with O3 and O1 and (iii) type B between N atoms ε, η1 with O3 and O2 of the nitrate anions (Salunke & Vijayan, 1981). An intermolecular short contact of 2.903 (12) Å is observed between O4 and the carboxyl C11(1 - x, 1/2 + y, 1 - z) atom.

Experimental top

The title compound was crystallized in aqueous solution from 1:2 stoichiometric ratio of L-arginine and nitric acid. Colorless needle-shaped crystals were grown.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of the diprotonated argininium cation showing the atomic numbering scheme and 50% probability displacement ellipsoids (Spek, 1999).
L-Argininium dinitrate top
Crystal data top
C6H16N4O22+·2NO3F(000) = 316
Mr = 300.25Dx = 1.519 Mg m3
Dm = 1.519 Mg m3
Dm measured by flotation in a mixture of carbon tetrachloride and xylene
Monoclinic, P21Cu Kα radiation, λ = 1.54180 Å
a = 7.744 (5) ÅCell parameters from 25 reflections
b = 7.284 (5) Åθ = 14.9–26.9°
c = 11.653 (5) ŵ = 1.22 mm1
β = 92.600 (5)°T = 293 K
V = 656.6 (7) Å3Needles, colorless
Z = 20.03 × 0.02 × 0.01 mm
Data collection top
Enraf-Nonius sealed tube
diffractometer
1213 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 68.0°, θmin = 3.8°
ω–2θ scansh = 99
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.967, Tmax = 0.984l = 014
1284 measured reflections3 standard reflections every 60 min
1284 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.218H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
1284 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.35 e Å3
1 restraintΔρmin = 0.44 e Å3
Crystal data top
C6H16N4O22+·2NO3V = 656.6 (7) Å3
Mr = 300.25Z = 2
Monoclinic, P21Cu Kα radiation
a = 7.744 (5) ŵ = 1.22 mm1
b = 7.284 (5) ÅT = 293 K
c = 11.653 (5) Å0.03 × 0.02 × 0.01 mm
β = 92.600 (5)°
Data collection top
Enraf-Nonius sealed tube
diffractometer
1213 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.967, Tmax = 0.9843 standard reflections every 60 min
1284 measured reflections intensity decay: none
1284 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0701 restraint
wR(F2) = 0.218H-atom parameters constrained
S = 1.08Δρmax = 0.35 e Å3
1284 reflectionsΔρmin = 0.44 e Å3
181 parameters
Special details top

Experimental. Intensity measurement was not carried out for the Friedel pairs.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4833 (7)0.1038 (9)0.8694 (5)0.0397 (14)
O10.3517 (6)0.1002 (8)0.8013 (4)0.0445 (13)
O20.6214 (6)0.0334 (10)0.8405 (4)0.0531 (16)
O30.4728 (7)0.1721 (12)0.9646 (5)0.065 (2)
N20.7063 (8)0.4811 (11)0.6596 (6)0.0480 (16)
O40.8176 (8)0.6055 (11)0.6715 (5)0.0661 (19)
O50.6552 (8)0.4366 (9)0.5605 (5)0.0555 (16)
O60.6464 (11)0.4076 (14)0.7431 (6)0.090 (3)
O1A0.0856 (7)0.5379 (11)0.3654 (4)0.0589 (17)
O1B0.3654 (6)0.4622 (11)0.3822 (4)0.0531 (17)
H1B0.36690.50260.31660.080*
C110.2076 (9)0.4760 (13)0.4196 (6)0.0420 (18)
C120.1966 (10)0.4121 (11)0.5432 (6)0.0393 (16)
H120.08140.36030.55310.047*
N30.3284 (8)0.2670 (9)0.5704 (5)0.0398 (14)
H3A0.32050.23120.64300.060*
H3B0.43360.31190.56050.060*
H3C0.30960.17150.52390.060*
C130.2213 (9)0.5750 (11)0.6234 (6)0.0386 (16)
H13A0.13910.67010.60050.046*
H13B0.33660.62440.61600.046*
C140.1973 (10)0.5257 (11)0.7482 (6)0.0382 (16)
H14A0.09190.45510.75430.046*
H14B0.29340.45050.77660.046*
C150.1877 (10)0.6979 (11)0.8201 (6)0.0415 (17)
H15A0.29470.76580.81450.050*
H15B0.09470.77450.78860.050*
N40.1587 (7)0.6630 (11)0.9416 (5)0.0410 (15)
H40.24820.64420.98640.049*
C160.0089 (9)0.6584 (11)0.9869 (6)0.0339 (15)
N50.0006 (8)0.6455 (12)1.1008 (5)0.0504 (18)
H5A0.09410.64031.14350.061*
H5B0.09830.64231.13160.061*
N60.1363 (8)0.6680 (12)0.9253 (5)0.0496 (17)
H6A0.13470.67780.85180.060*
H6B0.23330.66450.95830.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.041 (3)0.042 (3)0.036 (3)0.001 (3)0.001 (2)0.004 (3)
O10.038 (3)0.054 (3)0.042 (3)0.007 (3)0.004 (2)0.006 (3)
O20.038 (3)0.080 (4)0.041 (3)0.019 (3)0.005 (2)0.006 (3)
O30.043 (3)0.101 (6)0.052 (3)0.009 (4)0.003 (2)0.032 (4)
N20.046 (4)0.052 (4)0.046 (4)0.001 (3)0.004 (3)0.010 (3)
O40.065 (4)0.076 (5)0.056 (4)0.026 (4)0.010 (3)0.015 (4)
O50.068 (4)0.057 (4)0.041 (3)0.005 (3)0.007 (3)0.005 (3)
O60.111 (6)0.113 (7)0.047 (3)0.054 (5)0.006 (3)0.024 (4)
O1A0.053 (3)0.085 (5)0.039 (3)0.009 (3)0.000 (2)0.007 (3)
O1B0.036 (3)0.089 (5)0.034 (2)0.006 (3)0.003 (2)0.015 (3)
C110.033 (3)0.058 (5)0.034 (3)0.005 (4)0.006 (3)0.001 (4)
C120.046 (4)0.037 (4)0.034 (3)0.002 (3)0.005 (3)0.007 (3)
N30.052 (3)0.035 (3)0.033 (3)0.000 (3)0.005 (2)0.001 (3)
C130.037 (3)0.041 (4)0.038 (4)0.001 (3)0.009 (3)0.008 (3)
C140.049 (4)0.038 (4)0.028 (3)0.001 (3)0.008 (3)0.003 (3)
C150.047 (4)0.038 (4)0.040 (4)0.005 (3)0.012 (3)0.005 (3)
N40.030 (3)0.060 (4)0.034 (3)0.010 (3)0.001 (2)0.008 (3)
C160.025 (3)0.043 (4)0.035 (3)0.011 (3)0.004 (2)0.006 (3)
N50.040 (3)0.070 (5)0.042 (3)0.005 (4)0.007 (2)0.006 (4)
N60.039 (3)0.069 (5)0.041 (3)0.011 (4)0.009 (2)0.001 (4)
Geometric parameters (Å, º) top
N1—O31.222 (8)C13—H13A0.97
N1—O21.246 (8)C13—H13B0.97
N1—O11.262 (7)C14—C151.512 (11)
N2—O61.221 (9)C14—H14A0.97
N2—O51.246 (8)C14—H14B0.97
N2—O41.254 (10)C15—N41.465 (9)
O1A—C111.201 (9)C15—H15A0.97
O1B—C111.320 (8)C15—H15B0.97
O1B—H1B0.8200N4—C161.296 (9)
C11—C121.520 (10)N4—H40.86
C12—N31.493 (10)C16—N61.308 (9)
C12—C131.517 (11)C16—N51.336 (9)
C12—H120.98N5—H5A0.86
N3—H3A0.89N5—H5B0.86
N3—H3B0.89N6—H6A0.86
N3—H3C0.89N6—H6B0.86
C13—C141.518 (9)
O3—N1—O2120.4 (6)C14—C13—H13B109.0
O3—N1—O1119.6 (6)H13A—C13—H13B107.8
O2—N1—O1120.0 (6)C15—C14—C13110.2 (6)
O6—N2—O5120.5 (8)C15—C14—H14A109.6
O6—N2—O4120.8 (7)C13—C14—H14A109.6
O5—N2—O4118.6 (7)C15—C14—H14B109.6
C11—O1B—H1B109.5C13—C14—H14B109.6
O1A—C11—O1B124.9 (7)H14A—C14—H14B108.1
O1A—C11—C12122.5 (6)N4—C15—C14113.9 (7)
O1B—C11—C12112.5 (6)N4—C15—H15A108.8
N3—C12—C13110.9 (6)C14—C15—H15A108.8
N3—C12—C11110.5 (6)N4—C15—H15B108.8
C13—C12—C11109.5 (7)C14—C15—H15B108.8
N3—C12—H12108.6H15A—C15—H15B107.7
C13—C12—H12108.6C16—N4—C15125.3 (6)
C11—C12—H12108.6C16—N4—H4117.4
C12—N3—H3A109.5C15—N4—H4117.4
C12—N3—H3B109.5N4—C16—N6122.5 (6)
H3A—N3—H3B109.5N4—C16—N5119.4 (6)
C12—N3—H3C109.5N6—C16—N5118.0 (6)
H3A—N3—H3C109.5C16—N5—H5A120.0
H3B—N3—H3C109.5C16—N5—H5B120.0
C12—C13—C14112.8 (6)H5A—N5—H5B120.0
C12—C13—H13A109.0C16—N6—H6A120.0
C14—C13—H13A109.0C16—N6—H6B120.0
C12—C13—H13B109.0H6A—N6—H6B120.0
O1A—C11—C12—N3152.9 (9)C12—C13—C14—C15168.6 (6)
O1B—C11—C12—N329.7 (10)C13—C14—C15—N4178.0 (6)
O1A—C11—C12—C1384.6 (10)C14—C15—N4—C1692.9 (10)
O1B—C11—C12—C1392.8 (9)C15—N4—C16—N66.6 (14)
N3—C12—C13—C1462.5 (8)C15—N4—C16—N5172.6 (8)
C11—C12—C13—C14175.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1B—H1B···O2i0.821.852.653 (7)166
N3—H3A···O10.892.082.950 (8)165
N3—H3B···O50.891.942.823 (9)170
N3—H3C···O5ii0.892.002.855 (9)161
N3—H3C···O4ii0.892.493.212 (9)139
N4—H4···O3iii0.862.223.010 (8)153
N4—H4···O2iii0.862.363.138 (8)151
N5—H5A···O2iii0.862.343.086 (9)146
N5—H5B···O1iv0.862.173.022 (8)173
N6—H6A···O4v0.862.182.998 (9)158
N6—H6B···O3iv0.862.102.957 (9)177
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z+1; (iii) x+1, y+1/2, z+2; (iv) x, y+1/2, z+2; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC6H16N4O22+·2NO3
Mr300.25
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)7.744 (5), 7.284 (5), 11.653 (5)
β (°) 92.600 (5)
V3)656.6 (7)
Z2
Radiation typeCu Kα
µ (mm1)1.22
Crystal size (mm)0.03 × 0.02 × 0.01
Data collection
DiffractometerEnraf-Nonius sealed tube
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.967, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
1284, 1284, 1213
Rint0.000
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.218, 1.08
No. of reflections1284
No. of parameters181
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.44

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999), SHELXL97.

Selected geometric parameters (Å, º) top
O1A—C111.201 (9)C16—N61.308 (9)
O1B—C111.320 (8)C16—N51.336 (9)
N4—C161.296 (9)
N4—C16—N6122.5 (6)N6—C16—N5118.0 (6)
N4—C16—N5119.4 (6)
O1B—C11—C12—N329.7 (10)C14—C15—N4—C1692.9 (10)
N3—C12—C13—C1462.5 (8)C15—N4—C16—N66.6 (14)
C12—C13—C14—C15168.6 (6)C15—N4—C16—N5172.6 (8)
C13—C14—C15—N4178.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1B—H1B···O2i0.821.852.653 (7)166
N3—H3A···O10.892.082.950 (8)165
N3—H3B···O50.891.942.823 (9)170
N3—H3C···O5ii0.892.002.855 (9)161
N3—H3C···O4ii0.892.493.212 (9)139
N4—H4···O3iii0.862.223.010 (8)153
N4—H4···O2iii0.862.363.138 (8)151
N5—H5A···O2iii0.862.343.086 (9)146
N5—H5B···O1iv0.862.173.022 (8)173
N6—H6A···O4v0.862.182.998 (9)158
N6—H6B···O3iv0.862.102.957 (9)177
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z+1; (iii) x+1, y+1/2, z+2; (iv) x, y+1/2, z+2; (v) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds