Download citation
Download citation
link to html
In the mol­ecule of the title compound, C9H11N3O2, the glyoxime group has an E configuration. In the crystal structure, the mol­ecules are linked into a ribbon-like structure along the c axis by inter­molecular O—H...N and O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807058163/ci2513sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807058163/ci2513Isup2.hkl
Contains datablock I

CCDC reference: 672962

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.032
  • wR factor = 0.082
  • Data-to-parameter ratio = 7.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.69 mm PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax .LT. 18) ..... 7.88 PLAT230_ALERT_2_C Hirshfeld Test Diff for C3 - C4 .. 5.60 su
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.01 From the CIF: _reflns_number_total 1072 Count of symmetry unique reflns 1075 Completeness (_total/calc) 99.72% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Intermolecular hydrogen bonding combines moderate strength and directionally (Karle et al., 1996) in linking molecules to form supramolecular structures; this has received considerable attention with respect to directional non-covalent intermolecular interactions (Etter et al., 1990). The oxime (–C=N—OH) moiety is potentially ambidentate, with possibilities of coordination through the N and/or O atoms. It is a functional group that has not been extensively explored in crystal engineering. In the solid state, oximes are usually associated via O—H···N hydrogen bonds of length 2.8 Å. Oxime groups posses stronger hydrogen-bonding capabilities than alcohols, phenols and carboxylic acids (Marsman et al., 1999). The hydrogen-bond systems in the crystals of oximes have been analysed and a correlation between a pattern of hydrogen bonding and N—O bond lengths has been suggested (Bertolasi et al., 1982). The configurational and/or conformational isomers of glyoxime derivatives (dioximes) have also been analysed (Chertanova et al., 1994).

The crystal structures of oxime and dioxime derivatives, viz. 2,3-dimethylquinoxaline-dimethylglyoxime (1/1) (Hökelek, Batı et al., 2001), 1-(2,6-dimethylphenlamino)propane-1,2-dione dioxime (Hökelek, Zülfikaroğlu et al., 2001) and N-hydroxy-2-oxo-2,N\'-diphenylacetamidine (Büyükgüngör et al., 2003) have been reported. The structure determination of the title compound (Fig.1) was carried out in order to investigate the strength of the hydrogen bonding capability of the oxime group.

The dihedral angles between the glyoxime planes A (O2/N3/C8), B (O1/N2/C9) and benzene ring C (C1—C6) are A/B= 33.0 (2)°, A/C=42.1 (2)° and B/C=45.1 (2)°. In the glyoxime moiety, the O2—N3 [1.414 (2) Å] bond length is longer than O1—N2 [1.392 (2) Å], while the O1—N2—C9 [111.5 (2)°] bond angle is larger than O2—N3—C8 [110.5 (2)°], reflecting the types and electron-withdrawing or -donating properties of the substituents bonded to C atoms of the glyoxime moiety.

The glyoxime moiety has an E configuration [C9—C8—N3—O2 = -180.0 (2)° and C8—C9—N2—O1 = 178.0 (2)°] (Chertanova et al., 1994). In this configuration, both oxime groups are involved as donors in intermolecular hydrogen bonds (Table 2).

In the crystal structure, the molecules are linked into a ribbon-like structure (Fig. 2) along the c axis by intermolecular O—H···N and O—H···O hydrogen bonds (Fig. 2).

Related literature top

For related literature, see: Büyükgüngör et al. (2003); Bertolasi et al. (1982); Chertanova et al. (1994); Etter et al. (1990); Hökelek, Batı et al. (2001); Hökelek, Zülfikaroğlu et al. (2001); Karle et al. (1996); Marsman et al. (1999); Özcan & Mirzaoğlu (1988).

Experimental top

The title compound was prepared as described by Özcan and Mirzaoğlu (1988), using p-toluidine and anti-chloroglyoxime as starting materials in absolute ethanol at 263 K (white precipate; yield 45%; m.p. 445 K). Colourless crystals of the title compound suitable for X-ray crystallographic analysis were obtained by slow evaporation of a DMF solution at room temperature.

Refinement top

Atoms H1A and H22 were located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically [N—H = 0.86 Å and C—H = 0.93 Å (aromatic) or 0.96 Å (methyl)] and constrained to ride on their parent atom, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for other H atoms. 942 Friedel pairs were averaged before the final refinement as the absolute structure could not be determined unambiguously.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound, showing a hydrogen-bonded (dashed lines) ribbon. H atoms not involved in hydrogen bonding have been omitted for clarity.
(1Z,2E)-2-(Hydroxyimino)-N-p-tolylacetamide oxime top
Crystal data top
C9H11N3O2F(000) = 408
Mr = 193.21Dx = 1.315 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 24450 reflections
a = 9.0031 (12) Åθ = 3.0–27.3°
b = 19.352 (3) ŵ = 0.10 mm1
c = 6.9742 (9) ÅT = 296 K
β = 126.596 (9)°Prism, pale yellow
V = 975.6 (3) Å30.69 × 0.36 × 0.14 mm
Z = 4
Data collection top
STOE IPDS II
diffractometer
1072 independent reflections
Radiation source: fine-focus sealed tube1024 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 6.67 pixels mm-1θmax = 27.0°, θmin = 3.0°
ω scanh = 1111
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2424
Tmin = 0.947, Tmax = 0.987l = 88
9760 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.1463P]
where P = (Fo2 + 2Fc2)/3
1072 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.13 e Å3
3 restraintsΔρmin = 0.14 e Å3
Crystal data top
C9H11N3O2V = 975.6 (3) Å3
Mr = 193.21Z = 4
Monoclinic, CcMo Kα radiation
a = 9.0031 (12) ŵ = 0.10 mm1
b = 19.352 (3) ÅT = 296 K
c = 6.9742 (9) Å0.69 × 0.36 × 0.14 mm
β = 126.596 (9)°
Data collection top
STOE IPDS II
diffractometer
1072 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1024 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.987Rint = 0.060
9760 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0323 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.13 e Å3
1072 reflectionsΔρmin = 0.14 e Å3
136 parameters
Special details top

Experimental. 484 frames, detector distance = 70 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5005 (3)0.26817 (10)0.3450 (4)0.0396 (4)
C20.4256 (3)0.33277 (12)0.3234 (4)0.0471 (5)
H20.37110.34180.39970.057*
C30.4312 (4)0.38366 (12)0.1898 (5)0.0569 (6)
H30.38150.42690.17900.068*
C40.5096 (4)0.37194 (13)0.0704 (4)0.0539 (6)
C50.5878 (3)0.30800 (13)0.0987 (4)0.0513 (5)
H50.64330.29910.02370.062*
C60.5859 (3)0.25656 (11)0.2356 (4)0.0439 (5)
H60.64200.21420.25410.053*
C70.5105 (5)0.42754 (17)0.0808 (6)0.0820 (10)
H7A0.43180.46490.10190.123*
H7B0.46580.40870.23390.123*
H7C0.63430.44430.00280.123*
C80.4705 (3)0.14747 (10)0.4385 (3)0.0373 (4)
C90.4235 (3)0.11959 (10)0.2112 (3)0.0375 (4)
H90.35450.14520.07080.045*
N10.4869 (3)0.21670 (9)0.4769 (3)0.0441 (4)
H10.48930.23080.59570.053*
N20.4806 (3)0.05983 (9)0.2152 (3)0.0422 (4)
N30.4826 (3)0.10245 (9)0.5830 (3)0.0443 (4)
O10.4217 (3)0.03900 (8)0.0112 (3)0.0513 (4)
O20.5278 (3)0.13481 (9)0.7934 (3)0.0566 (5)
H1A0.456 (4)0.0057 (18)0.009 (5)0.060 (9)*
H2A0.497 (5)0.1034 (19)0.860 (6)0.073 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0436 (11)0.0315 (10)0.0392 (10)0.0042 (8)0.0223 (9)0.0034 (8)
C20.0519 (12)0.0341 (10)0.0535 (12)0.0017 (8)0.0304 (10)0.0061 (8)
C30.0571 (14)0.0312 (9)0.0616 (14)0.0013 (9)0.0242 (11)0.0012 (10)
C40.0532 (13)0.0446 (12)0.0486 (12)0.0101 (10)0.0221 (11)0.0064 (10)
C50.0555 (13)0.0494 (13)0.0501 (12)0.0124 (10)0.0321 (10)0.0033 (10)
C60.0503 (12)0.0334 (10)0.0508 (11)0.0016 (9)0.0317 (10)0.0016 (8)
C70.092 (2)0.0601 (17)0.073 (2)0.0113 (16)0.0385 (18)0.0197 (15)
C80.0459 (11)0.0324 (10)0.0405 (10)0.0025 (8)0.0295 (9)0.0027 (8)
C90.0498 (11)0.0299 (9)0.0367 (9)0.0009 (8)0.0279 (8)0.0018 (7)
N10.0645 (11)0.0340 (9)0.0464 (9)0.0022 (8)0.0398 (9)0.0049 (7)
N20.0653 (11)0.0339 (8)0.0386 (8)0.0003 (8)0.0371 (8)0.0001 (7)
N30.0639 (11)0.0395 (9)0.0427 (9)0.0055 (8)0.0390 (8)0.0043 (7)
O10.0877 (13)0.0352 (8)0.0436 (8)0.0018 (8)0.0459 (9)0.0020 (6)
O20.0891 (14)0.0523 (10)0.0487 (9)0.0105 (9)0.0521 (10)0.0087 (7)
Geometric parameters (Å, º) top
C1—C21.386 (3)C7—H7B0.96
C1—C61.387 (3)C7—H7C0.96
C1—N11.410 (3)C8—N31.287 (3)
C2—C31.377 (4)C8—N11.357 (3)
C2—H20.93C8—C91.478 (3)
C3—C41.394 (4)C9—N21.259 (3)
C3—H30.93C9—H90.93
C4—C51.378 (4)N1—H10.86
C4—C71.510 (4)N2—O11.392 (2)
C5—C61.387 (3)N3—O21.414 (2)
C5—H50.93O1—H1A0.90 (3)
C6—H60.93O2—H2A0.90 (4)
C7—H7A0.96
C2—C1—C6118.7 (2)C4—C7—H7B109.5
C2—C1—N1118.84 (19)H7A—C7—H7B109.5
C6—C1—N1122.47 (18)C4—C7—H7C109.5
C3—C2—C1120.4 (2)H7A—C7—H7C109.5
C3—C2—H2119.8H7B—C7—H7C109.5
C1—C2—H2119.8N3—C8—N1124.44 (19)
C2—C3—C4121.6 (2)N3—C8—C9115.44 (18)
C2—C3—H3119.2N1—C8—C9120.00 (18)
C4—C3—H3119.2N2—C9—C8117.38 (17)
C5—C4—C3117.2 (2)N2—C9—H9121.3
C5—C4—C7121.7 (3)C8—C9—H9121.3
C3—C4—C7121.1 (3)C8—N1—C1127.63 (18)
C4—C5—C6121.9 (2)C8—N1—H1116.2
C4—C5—H5119.1C1—N1—H1116.2
C6—C5—H5119.1C9—N2—O1111.50 (16)
C5—C6—C1120.1 (2)C8—N3—O2110.52 (17)
C5—C6—H6120.0N2—O1—H1A104 (2)
C1—C6—H6120.0N3—O2—H2A104 (2)
C4—C7—H7A109.5
C6—C1—C2—C31.9 (3)N3—C8—C9—N232.1 (3)
N1—C1—C2—C3178.0 (2)N1—C8—C9—N2151.7 (2)
C1—C2—C3—C40.8 (4)N3—C8—N1—C1170.6 (2)
C2—C3—C4—C52.4 (4)C9—C8—N1—C113.6 (4)
C2—C3—C4—C7178.4 (2)C2—C1—N1—C8147.7 (2)
C3—C4—C5—C61.3 (4)C6—C1—N1—C832.2 (3)
C7—C4—C5—C6179.4 (2)C8—C9—N2—O1177.96 (19)
C4—C5—C6—C11.3 (3)N1—C8—N3—O24.0 (3)
C2—C1—C6—C52.9 (3)C9—C8—N3—O2179.96 (19)
N1—C1—C6—C5177.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N3i0.90 (3)1.92 (3)2.792 (2)162 (3)
O1—H1A···N2i0.90 (3)2.43 (3)2.965 (2)119 (2)
O2—H2A···O1ii0.90 (4)1.88 (4)2.786 (2)177 (3)
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC9H11N3O2
Mr193.21
Crystal system, space groupMonoclinic, Cc
Temperature (K)296
a, b, c (Å)9.0031 (12), 19.352 (3), 6.9742 (9)
β (°) 126.596 (9)
V3)975.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.69 × 0.36 × 0.14
Data collection
DiffractometerSTOE IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.947, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
9760, 1072, 1024
Rint0.060
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.082, 1.12
No. of reflections1072
No. of parameters136
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.14

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
N2—O11.392 (2)N3—O21.414 (2)
C9—N2—O1111.50 (16)C8—N3—O2110.52 (17)
C8—C9—N2—O1177.96 (19)C9—C8—N3—O2179.96 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N3i0.90 (3)1.92 (3)2.792 (2)162 (3)
O1—H1A···N2i0.90 (3)2.43 (3)2.965 (2)119 (2)
O2—H2A···O1ii0.90 (4)1.88 (4)2.786 (2)177 (3)
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds