Download citation
Download citation
link to html
The title compound, [Sn(CH3)2(C7HF4O2)2(C12H8N2)], was synthesized by the reaction of dimethyl­tin(IV) dichloride and disodium 2,3,4,5-tetra­fluoro­benzoate in the presence of 1,10-phenanthroline. In the complex, the SnIV ion is coordinated by three O atoms of two tetra­fluoro­benzoate ligands, two N atoms of a 1,10-phenanthroline ligand and two methyl groups in a distorted penta­gonal–bipyramidal coordination. The axial positions are occupied by the methyl groups. In the crystal structure, C—H...F and C—H...O hydrogen bonds link the mol­ecules into cyclic centrosymmetric dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807048362/ci2474sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807048362/ci2474Isup2.hkl
Contains datablock I

CCDC reference: 643353

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.016 Å
  • R factor = 0.081
  • wR factor = 0.222
  • Data-to-parameter ratio = 11.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.96 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C6 PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 16 PLAT432_ALERT_2_C Short Inter X...Y Contact C13 .. C22 .. 3.19 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Organotin carboxylate complexes have recently attracted much attention due to their biochemical and commercial applications (Narula et al., 1988). In order to explore the impact of the structure on properties of the complexes, as well as to analyze the structure–activity relationships, a large number of organotin carboxylates have been prepared and studied (Gielen, 2002). We report here the crystal structure of the title compound, Me2Sn(C6HF4CO2)2(C12H8N2), with 1,10-phenanthroline as a co-ligand.

The coordination geometry about the Sn atom is best described as distorted pentagonal bipyramidal with the axial positions occupied by methyl groups (Table 1). Three carboxylate O atoms (O1,O2,O3) from two tetrafluorobenzoate ligands and the two N atoms (N1,N2) of the 1,10-phenanthroline ligand occupy the basal plane (Fig. 1). The Sn—N distances (Table 1) are longer than the sum of the covalent radii of Sn and N atoms (2.15 Å), but much shorter than the sum of van der Waals radii of the two atoms (3.74 Å; Casas et al., 1997). The Sn1—O3 bond length of 2.146 (7) Å is close to the sum of the covalent radii of Sn and O atoms (2.13 Å), showing strong coordination interaction, which is in agreement with the monodentate coordination mode of the carboxylate group (Li et al., 2005). The Sn1—O2 [2.360 (7) Å] and Sn1—O1 [2.554 (8) Å] distances lie midway between the sums of the van der Waals and covalent radii of Sn and O atoms (2.13–3.68 Å; Ma et al., 2005).

In the crystal structure, C—H···F and C—H···O type hydrogen bonds link the molecules into cyclic centrosymmetric dimers (Table 2).

Related literature top

For applications of organotin carboxylate complexes, see: Narula et al. (1988). For related structures, see: Gielen (2002); Li et al. (2005). For van der Waals radii and covalent radii data, see: Casas et al. (1997); Ma et al. (2005).

Experimental top

All reagents and solvents were used as obtained without further purification. The reaction was carried out under a nitrogen atmosphere. 2,3,4,5-Tetrafluorobenzoic acid (0.388 g, 2 mmol) was added to a solution of sodium ethoxide (0.272 g, 2 mmol) in benzene (30 ml) and the mixture was stirred for 10 min, after that dimethyltin dichloride (0.220 g, 1 mmol) and 1,10-phenanthroline (0.198 g, 1 mmol) were added. The reaction mixture was kept at 313 K for 12 h. After cooling to room temperature, the solution was filtered. The solvent was removed from the filtrate under vacuum. The solid residue was recrystallized from diethyl ether and colourless crystals of the title compound suitable for X-Ray diffraction studies were obtained (yield 0.724 g, 81%; m.p. 414 K). Analysis, calculated for C28H16N2O4Sn: C 59.72, H 2.86, N 4.97; found: C 59.53, H 2.68, N 5.17%.

Refinement top

H atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å (aromatic) and 0.96 Å (methyl) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Structure description top

Organotin carboxylate complexes have recently attracted much attention due to their biochemical and commercial applications (Narula et al., 1988). In order to explore the impact of the structure on properties of the complexes, as well as to analyze the structure–activity relationships, a large number of organotin carboxylates have been prepared and studied (Gielen, 2002). We report here the crystal structure of the title compound, Me2Sn(C6HF4CO2)2(C12H8N2), with 1,10-phenanthroline as a co-ligand.

The coordination geometry about the Sn atom is best described as distorted pentagonal bipyramidal with the axial positions occupied by methyl groups (Table 1). Three carboxylate O atoms (O1,O2,O3) from two tetrafluorobenzoate ligands and the two N atoms (N1,N2) of the 1,10-phenanthroline ligand occupy the basal plane (Fig. 1). The Sn—N distances (Table 1) are longer than the sum of the covalent radii of Sn and N atoms (2.15 Å), but much shorter than the sum of van der Waals radii of the two atoms (3.74 Å; Casas et al., 1997). The Sn1—O3 bond length of 2.146 (7) Å is close to the sum of the covalent radii of Sn and O atoms (2.13 Å), showing strong coordination interaction, which is in agreement with the monodentate coordination mode of the carboxylate group (Li et al., 2005). The Sn1—O2 [2.360 (7) Å] and Sn1—O1 [2.554 (8) Å] distances lie midway between the sums of the van der Waals and covalent radii of Sn and O atoms (2.13–3.68 Å; Ma et al., 2005).

In the crystal structure, C—H···F and C—H···O type hydrogen bonds link the molecules into cyclic centrosymmetric dimers (Table 2).

For applications of organotin carboxylate complexes, see: Narula et al. (1988). For related structures, see: Gielen (2002); Li et al. (2005). For van der Waals radii and covalent radii data, see: Casas et al. (1997); Ma et al. (2005).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
Dimethyl(1,10-phenanthroline)bis(2,3,4,5-tetrafluorobenzoato)tin(IV) top
Crystal data top
[Sn(CH3)2(C7HF4O2)2(C12H8N2)]Z = 2
Mr = 715.12F(000) = 704
Triclinic, P1Dx = 1.807 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.265 (4) ÅCell parameters from 2191 reflections
b = 10.174 (6) Åθ = 2.4–25.8°
c = 18.957 (11) ŵ = 1.07 mm1
α = 90.519 (10)°T = 298 K
β = 90.205 (9)°Block, colourless
γ = 110.247 (8)°0.18 × 0.13 × 0.09 mm
V = 1314.5 (13) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
4483 independent reflections
Radiation source: fine-focus sealed tube3007 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
φ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.831, Tmax = 0.910k = 1211
6410 measured reflectionsl = 2215
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.222H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.132P)2]
where P = (Fo2 + 2Fc2)/3
4483 reflections(Δ/σ)max = 0.001
388 parametersΔρmax = 1.64 e Å3
0 restraintsΔρmin = 2.31 e Å3
Crystal data top
[Sn(CH3)2(C7HF4O2)2(C12H8N2)]γ = 110.247 (8)°
Mr = 715.12V = 1314.5 (13) Å3
Triclinic, P1Z = 2
a = 7.265 (4) ÅMo Kα radiation
b = 10.174 (6) ŵ = 1.07 mm1
c = 18.957 (11) ÅT = 298 K
α = 90.519 (10)°0.18 × 0.13 × 0.09 mm
β = 90.205 (9)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4483 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3007 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.910Rint = 0.054
6410 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0810 restraints
wR(F2) = 0.222H-atom parameters constrained
S = 1.01Δρmax = 1.64 e Å3
4483 reflectionsΔρmin = 2.31 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.23811 (11)0.21428 (7)0.24653 (4)0.0428 (3)
F10.6709 (13)0.3680 (8)0.4720 (4)0.089 (2)
F20.8879 (12)0.5751 (8)0.5510 (4)0.079 (2)
F30.9354 (12)0.8410 (7)0.5194 (4)0.085 (2)
F40.7645 (13)0.8986 (7)0.4031 (5)0.095 (3)
F50.1948 (11)0.5064 (7)0.0229 (3)0.0693 (19)
F60.2542 (13)0.7781 (8)0.0370 (4)0.080 (2)
F70.3925 (12)0.9560 (6)0.0717 (4)0.076 (2)
F80.4790 (11)0.8624 (7)0.1952 (4)0.0697 (19)
N10.2041 (13)0.0126 (9)0.3011 (4)0.048 (2)
N20.0471 (13)0.0191 (8)0.1755 (5)0.048 (2)
O10.4267 (13)0.2843 (8)0.3628 (4)0.065 (2)
O20.4062 (12)0.4435 (7)0.2891 (4)0.063 (2)
O30.1802 (11)0.3414 (7)0.1657 (4)0.0480 (17)
O40.3100 (14)0.3174 (8)0.0624 (4)0.068 (2)
C10.4652 (17)0.4077 (12)0.3462 (6)0.052 (3)
C20.5966 (14)0.5214 (10)0.3913 (5)0.042 (2)
C30.6878 (16)0.4988 (10)0.4510 (6)0.048 (3)
C40.8018 (17)0.6015 (12)0.4933 (5)0.054 (3)
C50.8270 (18)0.7387 (12)0.4780 (6)0.063 (3)
C60.7380 (17)0.7658 (10)0.4181 (6)0.053 (3)
C70.6231 (16)0.6614 (11)0.3753 (6)0.052 (3)
H70.56260.68250.33590.062*
C80.2614 (17)0.3861 (11)0.1077 (6)0.049 (3)
C90.2966 (14)0.5365 (10)0.0970 (5)0.042 (2)
C100.2667 (15)0.5912 (10)0.0332 (5)0.045 (2)
C110.2951 (18)0.7302 (12)0.0255 (6)0.057 (3)
C120.3661 (18)0.8207 (10)0.0793 (6)0.055 (3)
C130.4030 (15)0.7691 (10)0.1428 (6)0.046 (2)
C140.3653 (15)0.6309 (11)0.1512 (6)0.046 (2)
H140.38650.59860.19520.056*
C150.2854 (18)0.0276 (13)0.3634 (6)0.061 (3)
H150.35590.05180.38950.073*
C160.2661 (19)0.1588 (13)0.3892 (7)0.066 (3)
H160.32350.16670.43220.079*
C170.1632 (18)0.2761 (13)0.3516 (8)0.069 (4)
H170.15060.36390.36900.083*
C180.0780 (19)0.2653 (12)0.2883 (7)0.061 (3)
C190.1024 (14)0.1294 (9)0.2646 (5)0.040 (2)
C200.0178 (14)0.1119 (9)0.1983 (6)0.043 (2)
C210.0894 (15)0.2316 (10)0.1590 (6)0.051 (3)
C220.1680 (17)0.2121 (12)0.0942 (6)0.053 (3)
H220.23870.28860.06630.064*
C230.1392 (16)0.0783 (12)0.0726 (6)0.057 (3)
H230.19240.06250.03020.068*
C240.0302 (17)0.0321 (12)0.1148 (6)0.058 (3)
H240.01010.12230.09900.070*
C250.0352 (18)0.3825 (11)0.2462 (7)0.064 (3)
H250.05250.47230.26190.076*
C260.1164 (18)0.3679 (11)0.1858 (7)0.063 (3)
H260.19170.44700.16040.076*
C270.5007 (19)0.2137 (12)0.2044 (6)0.066 (3)
H27A0.58620.30850.19720.098*
H27B0.47580.16410.16010.098*
H27C0.56170.16840.23640.098*
C280.0154 (18)0.2079 (12)0.3005 (6)0.061 (3)
H28A0.05560.12810.33090.092*
H28B0.11820.20070.26720.092*
H28C0.01140.29190.32830.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0444 (4)0.0339 (4)0.0483 (4)0.0111 (3)0.0070 (3)0.0040 (3)
F10.093 (6)0.073 (5)0.095 (6)0.020 (4)0.019 (5)0.006 (4)
F20.088 (5)0.076 (5)0.061 (4)0.014 (4)0.027 (4)0.001 (4)
F30.088 (6)0.057 (4)0.087 (5)0.004 (4)0.024 (4)0.021 (4)
F40.115 (7)0.045 (4)0.112 (6)0.011 (4)0.020 (5)0.005 (4)
F50.090 (5)0.055 (4)0.058 (4)0.021 (4)0.019 (4)0.008 (3)
F60.110 (6)0.066 (5)0.073 (4)0.043 (4)0.012 (4)0.015 (4)
F70.098 (6)0.038 (3)0.095 (5)0.026 (4)0.015 (4)0.011 (3)
F80.075 (5)0.050 (4)0.078 (4)0.014 (3)0.003 (4)0.017 (3)
N10.053 (5)0.043 (5)0.054 (5)0.023 (4)0.000 (4)0.015 (4)
N20.051 (5)0.035 (4)0.060 (6)0.016 (4)0.008 (4)0.000 (4)
O10.072 (6)0.041 (4)0.076 (5)0.013 (4)0.014 (4)0.002 (4)
O20.069 (5)0.041 (4)0.060 (5)0.002 (4)0.023 (4)0.002 (4)
O30.054 (4)0.042 (4)0.047 (4)0.016 (3)0.001 (4)0.009 (3)
O40.089 (6)0.047 (5)0.066 (5)0.021 (4)0.009 (5)0.004 (4)
C10.055 (7)0.051 (7)0.048 (6)0.017 (5)0.022 (5)0.005 (5)
C20.036 (5)0.035 (5)0.054 (6)0.011 (4)0.002 (5)0.006 (5)
C30.053 (6)0.031 (5)0.054 (6)0.006 (5)0.000 (5)0.007 (5)
C40.057 (7)0.060 (7)0.041 (6)0.014 (6)0.004 (5)0.002 (5)
C50.064 (8)0.051 (7)0.057 (7)0.000 (6)0.004 (6)0.012 (6)
C60.054 (7)0.029 (5)0.068 (7)0.003 (5)0.003 (6)0.004 (5)
C70.043 (6)0.044 (6)0.062 (7)0.006 (5)0.003 (5)0.001 (5)
C80.055 (7)0.040 (6)0.046 (6)0.011 (5)0.012 (5)0.005 (5)
C90.037 (5)0.042 (5)0.047 (6)0.012 (4)0.002 (5)0.005 (5)
C100.044 (6)0.044 (6)0.045 (6)0.014 (5)0.004 (5)0.001 (5)
C110.064 (7)0.050 (7)0.058 (7)0.019 (6)0.008 (6)0.014 (6)
C120.063 (7)0.031 (5)0.071 (7)0.016 (5)0.010 (6)0.009 (5)
C130.038 (6)0.040 (5)0.062 (7)0.016 (5)0.008 (5)0.004 (5)
C140.037 (5)0.050 (6)0.052 (6)0.015 (5)0.007 (5)0.004 (5)
C150.055 (7)0.069 (8)0.072 (8)0.037 (6)0.005 (6)0.012 (6)
C160.063 (8)0.065 (8)0.081 (8)0.037 (7)0.006 (7)0.026 (7)
C170.050 (7)0.060 (8)0.108 (11)0.032 (6)0.016 (7)0.034 (7)
C180.066 (8)0.044 (6)0.071 (8)0.015 (6)0.018 (6)0.021 (6)
C190.034 (5)0.024 (4)0.063 (6)0.012 (4)0.005 (5)0.009 (4)
C200.032 (5)0.023 (5)0.065 (7)0.000 (4)0.008 (5)0.006 (4)
C210.032 (5)0.038 (6)0.075 (8)0.001 (4)0.016 (5)0.001 (5)
C220.049 (6)0.048 (6)0.056 (7)0.010 (5)0.005 (5)0.008 (5)
C230.046 (6)0.051 (7)0.057 (7)0.003 (5)0.004 (5)0.001 (5)
C240.064 (7)0.040 (6)0.055 (7)0.000 (5)0.011 (6)0.008 (5)
C250.065 (8)0.031 (6)0.098 (10)0.021 (5)0.015 (7)0.013 (6)
C260.059 (7)0.028 (5)0.095 (9)0.006 (5)0.021 (7)0.002 (6)
C270.072 (8)0.050 (7)0.070 (8)0.016 (6)0.012 (7)0.010 (6)
C280.068 (8)0.045 (6)0.065 (7)0.011 (6)0.004 (6)0.009 (5)
Geometric parameters (Å, º) top
Sn1—C272.072 (13)C9—C101.382 (14)
Sn1—C282.092 (13)C10—C111.366 (15)
Sn1—O32.146 (7)C11—C121.344 (16)
Sn1—O22.360 (7)C12—C131.380 (16)
Sn1—N22.389 (8)C13—C141.348 (14)
Sn1—N12.472 (8)C14—H140.93
Sn1—O12.554 (8)C15—C161.388 (16)
F1—C31.356 (12)C15—H150.93
F2—C41.332 (12)C16—C171.361 (18)
F3—C51.317 (12)C16—H160.93
F4—C61.331 (12)C17—C181.371 (17)
F5—C101.347 (11)C17—H170.93
F6—C111.355 (13)C18—C191.410 (14)
F7—C121.332 (11)C18—C251.426 (17)
F8—C131.345 (11)C19—C201.436 (14)
N1—C191.346 (12)C20—C211.403 (13)
N1—C151.351 (14)C21—C221.397 (16)
N2—C241.307 (13)C21—C261.430 (16)
N2—C201.350 (12)C22—C231.370 (16)
O1—C11.232 (13)C22—H220.93
O2—C11.265 (12)C23—C241.376 (14)
O3—C81.261 (13)C23—H230.93
O4—C81.229 (13)C24—H240.93
C1—C21.481 (14)C25—C261.319 (17)
C2—C31.371 (14)C25—H250.93
C2—C71.406 (14)C26—H260.93
C3—C41.343 (14)C27—H27A0.96
C4—C51.378 (16)C27—H27B0.96
C5—C61.380 (16)C27—H27C0.96
C6—C71.359 (14)C28—H28A0.96
C7—H70.93C28—H28B0.96
C8—C91.478 (14)C28—H28C0.96
C9—C141.370 (14)
C27—Sn1—C28173.1 (4)C12—C11—F6119.5 (10)
C27—Sn1—O395.4 (4)C12—C11—C10120.4 (10)
C28—Sn1—O391.1 (4)F6—C11—C10120.1 (10)
C27—Sn1—O288.2 (4)F7—C12—C11120.2 (11)
C28—Sn1—O290.9 (4)F7—C12—C13121.3 (10)
O3—Sn1—O277.6 (3)C11—C12—C13118.4 (10)
C27—Sn1—N293.0 (4)F8—C13—C14121.8 (10)
C28—Sn1—N289.7 (4)F8—C13—C12117.3 (9)
O3—Sn1—N285.6 (3)C14—C13—C12120.9 (10)
O2—Sn1—N2163.2 (3)C13—C14—C9121.9 (10)
C27—Sn1—N187.6 (4)C13—C14—H14119.0
C28—Sn1—N187.6 (4)C9—C14—H14119.0
O3—Sn1—N1153.2 (3)N1—C15—C16121.5 (12)
O2—Sn1—N1129.2 (3)N1—C15—H15119.3
N2—Sn1—N167.6 (3)C16—C15—H15119.3
C27—Sn1—O185.9 (4)C17—C16—C15119.9 (12)
C28—Sn1—O188.1 (4)C17—C16—H16120.0
O3—Sn1—O1130.3 (3)C15—C16—H16120.0
O2—Sn1—O152.8 (2)C16—C17—C18120.4 (11)
N2—Sn1—O1144.0 (3)C16—C17—H17119.8
N1—Sn1—O176.4 (3)C18—C17—H17119.8
C19—N1—C15118.0 (9)C17—C18—C19117.3 (11)
C19—N1—Sn1117.1 (6)C17—C18—C25124.1 (11)
C15—N1—Sn1124.9 (8)C19—C18—C25118.6 (11)
C24—N2—C20117.6 (9)N1—C19—C18123.0 (10)
C24—N2—Sn1123.4 (7)N1—C19—C20117.3 (8)
C20—N2—Sn1119.1 (7)C18—C19—C20119.7 (9)
C1—O1—Sn188.1 (6)N2—C20—C21122.4 (10)
C1—O2—Sn196.3 (7)N2—C20—C19118.9 (8)
C8—O3—Sn1133.0 (7)C21—C20—C19118.7 (9)
O1—C1—O2122.8 (10)C22—C21—C20117.8 (10)
O1—C1—C2120.2 (9)C22—C21—C26122.2 (10)
O2—C1—C2116.9 (10)C20—C21—C26120.0 (11)
C3—C2—C7116.8 (9)C23—C22—C21118.9 (10)
C3—C2—C1123.8 (9)C23—C22—H22120.6
C7—C2—C1119.3 (10)C21—C22—H22120.6
C4—C3—F1114.1 (9)C22—C23—C24118.8 (11)
C4—C3—C2124.0 (10)C22—C23—H23120.6
F1—C3—C2121.9 (9)C24—C23—H23120.6
F2—C4—C3122.1 (11)N2—C24—C23124.6 (11)
F2—C4—C5118.6 (10)N2—C24—H24117.7
C3—C4—C5119.2 (10)C23—C24—H24117.7
F3—C5—C4120.2 (11)C26—C25—C18122.3 (11)
F3—C5—C6121.3 (11)C26—C25—H25118.9
C4—C5—C6118.5 (10)C18—C25—H25118.9
F4—C6—C7119.7 (11)C25—C26—C21120.6 (11)
F4—C6—C5118.3 (10)C25—C26—H26119.7
C7—C6—C5122.0 (10)C21—C26—H26119.7
C6—C7—C2119.4 (10)Sn1—C27—H27A109.5
C6—C7—H7120.3Sn1—C27—H27B109.5
C2—C7—H7120.3H27A—C27—H27B109.5
O4—C8—O3126.4 (10)Sn1—C27—H27C109.5
O4—C8—C9120.3 (10)H27A—C27—H27C109.5
O3—C8—C9113.2 (9)H27B—C27—H27C109.5
C14—C9—C10116.1 (10)Sn1—C28—H28A109.5
C14—C9—C8120.4 (9)Sn1—C28—H28B109.5
C10—C9—C8123.5 (9)H28A—C28—H28B109.5
F5—C10—C11117.2 (10)Sn1—C28—H28C109.5
F5—C10—C9120.6 (9)H28A—C28—H28C109.5
C11—C10—C9122.1 (10)H28B—C28—H28C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···F5i0.932.483.217 (13)136
C22—H22···O4i0.932.493.191 (14)133
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Sn(CH3)2(C7HF4O2)2(C12H8N2)]
Mr715.12
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.265 (4), 10.174 (6), 18.957 (11)
α, β, γ (°)90.519 (10), 90.205 (9), 110.247 (8)
V3)1314.5 (13)
Z2
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.18 × 0.13 × 0.09
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.831, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
6410, 4483, 3007
Rint0.054
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.222, 1.01
No. of reflections4483
No. of parameters388
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.64, 2.31

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected geometric parameters (Å, º) top
Sn1—C272.072 (13)Sn1—N22.389 (8)
Sn1—C282.092 (13)Sn1—N12.472 (8)
Sn1—O32.146 (7)Sn1—O12.554 (8)
Sn1—O22.360 (7)
C27—Sn1—C28173.1 (4)C28—Sn1—N187.6 (4)
C27—Sn1—O395.4 (4)O3—Sn1—N1153.2 (3)
C28—Sn1—O391.1 (4)O2—Sn1—N1129.2 (3)
C27—Sn1—O288.2 (4)N2—Sn1—N167.6 (3)
C28—Sn1—O290.9 (4)C27—Sn1—O185.9 (4)
O3—Sn1—O277.6 (3)C28—Sn1—O188.1 (4)
C27—Sn1—N293.0 (4)O3—Sn1—O1130.3 (3)
C28—Sn1—N289.7 (4)O2—Sn1—O152.8 (2)
O3—Sn1—N285.6 (3)N2—Sn1—O1144.0 (3)
O2—Sn1—N2163.2 (3)N1—Sn1—O176.4 (3)
C27—Sn1—N187.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···F5i0.932.483.217 (13)136
C22—H22···O4i0.932.493.191 (14)133
Symmetry code: (i) x, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds