Download citation
Download citation
link to html
In the title compound, [LaCl3(C12H8N2)2(C3H7NO)]·2C3H7NO, the LaIII ion is eight-coordinated by four N donors from two 1,10-phenanthroline ligands, one O atom from one N,N-dimethyl­formamide mol­ecule and three chloride anions. In the crystal structure, the LaIII mononuclear units are linked to form a chain along the a axis by weak C—H...Cl hydrogen bonds. The chains are crosslinked to form a two-dimensional network parallel to the ab plane by π–π stacking inter­actions between the phen rings [centroid–centroid seperations range from 3.589 (2) to 3.708 (2) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807046739/ci2472sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807046739/ci2472Isup2.hkl
Contains datablock I

CCDC reference: 667099

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.033
  • wR factor = 0.082
  • Data-to-parameter ratio = 15.7

checkCIF/PLATON results

No syntax errors found




Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.74 Ratio PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) La1 - Cl3 .. 5.95 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N5 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for N6 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for N7 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C31 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C29
Alert level G PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for La1 (3) 3.26
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

In recent years, much attention has been focused on the synthetic approach and structural control of rare-earth (RE) complexes with various ligands, such as 2,2'-bipyridine and 1,10-phenanthroline (phen), not only because of their fascinating structural diversities but also their potential applications as optical materials, electronic materials, catalytic materials, molecular based magnets and so on (Bünzli, 2006; Suárez et al., 2004). Many novel functional complexes with 2,2'-bipyridine-like ligands have been reported (Edmonds et al., 2004; Molander & Romero, 2002; Wan et al., 2003; Ye et al., 2005). We report here the crystal structure of a LaIII complex with a chelating 1,10-phenanthroline ligand, [La(phen)2(DMF)Cl3](DMF)2, the title compound, (I) (DMF is N,N-dimethylformamide).

Compound (I) consists of mononuclear [La(phen)2(DMF)Cl3] units and free DMF molecules. The LaIII ion is eight-coordinated and surrounded by four N donors from two phen ligands, one O atom from one DMF molecule, and three Cl- anions (Fig. 1). The La—Cl distances range from 2.7905 (10) to 2.8212 (10) Å, and those of La—N range from 2.694 (3) to 2.758 (3) Å, which are in the normal range expected for such coordination complexes (Bünzli, 2006) (Table 1). The adjacent mononuclear [La(phen)2(DMF)Cl3] units are linked into a chain along the a axis by weak C—H···Cl hydrogen bonding interactions (Table 2) between the phen ligands and coordinated Cl- anions (Desiraju & Steiner,1999). The chains are cross-linked to generate a two-dimensional network parallel to the ab plane by intermolecular π-π stacking interactions between the phenanthroline ring systems, with centroid-centroid distances ranging from 3.589 (2) to 3.708 (2) Å (Fig. 2).

Related literature top

For synthesis, see: Shi et al. (2004). For hydrogen-bond details, see: Desiraju & Steiner (1999). For related literature, see: Bünzli (2006); Edmonds et al. (2004); Molander & Romero (2002); Suárez et al. (2004); Wan et al. (2003); Ye et al. (2005).

Experimental top

Compound (I) was synthesized according to the literature method of Shi et al. (2004). The reaction of LaCl3.7H2O (37 mg, 0.1 mmol) with 1,10-phenanthroline (20 mg, 0.1 mmol) in EtOH (25 ml) for a few minutes afforded a white powder solid, which was filtered, washed with acetone, and dried in air. Single crystals suitable for X-ray analysis were obtained by slow diffusion of Et2O into the DMF solution of the solid mentioned above after several days (yield: ~30%). Analysis calculated for C33H37Cl3LaN7O3: C 48.05, H 4.52, N 11.88%; found: C 48.26, H 4.48, N 11.96%.

Refinement top

H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 (aromatic) or 0.96 Å (methyl) and Uiso(H) = 1.2–1.5 Ueq(C). A rotating group model was used for the methyl groups.

Structure description top

In recent years, much attention has been focused on the synthetic approach and structural control of rare-earth (RE) complexes with various ligands, such as 2,2'-bipyridine and 1,10-phenanthroline (phen), not only because of their fascinating structural diversities but also their potential applications as optical materials, electronic materials, catalytic materials, molecular based magnets and so on (Bünzli, 2006; Suárez et al., 2004). Many novel functional complexes with 2,2'-bipyridine-like ligands have been reported (Edmonds et al., 2004; Molander & Romero, 2002; Wan et al., 2003; Ye et al., 2005). We report here the crystal structure of a LaIII complex with a chelating 1,10-phenanthroline ligand, [La(phen)2(DMF)Cl3](DMF)2, the title compound, (I) (DMF is N,N-dimethylformamide).

Compound (I) consists of mononuclear [La(phen)2(DMF)Cl3] units and free DMF molecules. The LaIII ion is eight-coordinated and surrounded by four N donors from two phen ligands, one O atom from one DMF molecule, and three Cl- anions (Fig. 1). The La—Cl distances range from 2.7905 (10) to 2.8212 (10) Å, and those of La—N range from 2.694 (3) to 2.758 (3) Å, which are in the normal range expected for such coordination complexes (Bünzli, 2006) (Table 1). The adjacent mononuclear [La(phen)2(DMF)Cl3] units are linked into a chain along the a axis by weak C—H···Cl hydrogen bonding interactions (Table 2) between the phen ligands and coordinated Cl- anions (Desiraju & Steiner,1999). The chains are cross-linked to generate a two-dimensional network parallel to the ab plane by intermolecular π-π stacking interactions between the phenanthroline ring systems, with centroid-centroid distances ranging from 3.589 (2) to 3.708 (2) Å (Fig. 2).

For synthesis, see: Shi et al. (2004). For hydrogen-bond details, see: Desiraju & Steiner (1999). For related literature, see: Bünzli (2006); Edmonds et al. (2004); Molander & Romero (2002); Suárez et al. (2004); Wan et al. (2003); Ye et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of a two-dimensional network generated by C—H···Cl (dashed lines) and π-π stacking (dashed-solid lines) interactions. Only H atoms involved in the interactions are shown for clarity.
Trichlorido(N,N-dimethylformamide-κO)bis(1,10-phenanthroline-\ κ2N,N')lanthanum(III) N,N-dimethylformamide disolvate top
Crystal data top
[LaCl3(C12H8N2)2(C3H7NO)]·2C3H7NOF(000) = 1664
Mr = 824.96Dx = 1.513 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5052 reflections
a = 10.0344 (11) Åθ = 2.3–22.9°
b = 17.3861 (19) ŵ = 1.44 mm1
c = 20.768 (2) ÅT = 294 K
β = 91.521 (1)°Block, colourless
V = 3621.9 (7) Å30.28 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6738 independent reflections
Radiation source: fine-focus sealed tube5246 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1212
Tmin = 0.691, Tmax = 0.800k = 2121
26591 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0362P)2 + 2.0867P]
where P = (Fo2 + 2Fc2)/3
6738 reflections(Δ/σ)max = 0.001
430 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[LaCl3(C12H8N2)2(C3H7NO)]·2C3H7NOV = 3621.9 (7) Å3
Mr = 824.96Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0344 (11) ŵ = 1.44 mm1
b = 17.3861 (19) ÅT = 294 K
c = 20.768 (2) Å0.28 × 0.18 × 0.16 mm
β = 91.521 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6738 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
5246 reflections with I > 2σ(I)
Tmin = 0.691, Tmax = 0.800Rint = 0.043
26591 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.01Δρmax = 0.65 e Å3
6738 reflectionsΔρmin = 0.35 e Å3
430 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.26566 (2)0.257762 (11)0.006982 (10)0.03058 (8)
Cl10.42502 (11)0.22137 (6)0.09739 (5)0.0509 (3)
Cl20.09143 (12)0.32315 (6)0.08456 (5)0.0587 (3)
Cl30.03624 (10)0.23105 (6)0.07937 (5)0.0520 (3)
O10.3370 (3)0.27886 (15)0.12551 (12)0.0440 (6)
O20.6722 (5)0.1430 (3)0.2457 (2)0.1301 (19)
O30.7636 (5)0.4546 (3)0.2676 (3)0.144 (2)
N10.2527 (3)0.40798 (16)0.04116 (15)0.0373 (7)
N20.4970 (3)0.34111 (17)0.02658 (15)0.0400 (8)
N30.3672 (3)0.12430 (16)0.05227 (14)0.0356 (7)
N40.1654 (3)0.12260 (16)0.03921 (14)0.0352 (7)
N50.3434 (4)0.35285 (19)0.21560 (15)0.0496 (9)
N60.8099 (4)0.2435 (2)0.2642 (2)0.0698 (11)
N70.7912 (6)0.5802 (3)0.24929 (19)0.0836 (14)
C10.6158 (4)0.3090 (3)0.0201 (2)0.0585 (12)
H10.62030.26140.00000.070*
C20.7353 (4)0.3434 (3)0.0421 (3)0.0701 (14)
H20.81660.31870.03730.084*
C30.7290 (4)0.4140 (3)0.0707 (2)0.0641 (13)
H30.80670.43770.08590.077*
C40.6068 (4)0.4505 (2)0.07696 (19)0.0468 (10)
C50.5942 (5)0.5259 (3)0.1058 (2)0.0581 (12)
H50.67030.55280.11880.070*
C60.4740 (5)0.5572 (2)0.1138 (2)0.0598 (12)
H60.46830.60550.13280.072*
C70.3546 (4)0.5186 (2)0.09412 (19)0.0462 (10)
C80.2273 (5)0.5492 (2)0.1026 (2)0.0632 (13)
H80.21750.59620.12330.076*
C90.1166 (5)0.5098 (2)0.0802 (2)0.0602 (12)
H90.03150.52960.08540.072*
C100.1348 (4)0.4399 (2)0.04980 (19)0.0453 (10)
H100.05950.41370.03450.054*
C110.3634 (4)0.44669 (19)0.06299 (17)0.0357 (8)
C120.4919 (4)0.4117 (2)0.05481 (17)0.0375 (9)
C130.4663 (4)0.1231 (2)0.09572 (19)0.0428 (10)
H130.49930.17000.11070.051*
C140.5246 (4)0.0559 (2)0.1206 (2)0.0484 (10)
H140.59490.05840.15060.058*
C150.4764 (4)0.0129 (2)0.10010 (18)0.0433 (10)
H150.51360.05830.11600.052*
C160.3702 (4)0.0157 (2)0.05486 (17)0.0377 (9)
C170.3136 (4)0.0860 (2)0.0320 (2)0.0489 (10)
H170.34600.13230.04850.059*
C180.2146 (4)0.0872 (2)0.01270 (19)0.0474 (10)
H180.18010.13400.02690.057*
C190.1617 (4)0.0170 (2)0.03869 (18)0.0380 (9)
C200.0596 (4)0.0155 (2)0.08625 (19)0.0494 (11)
H200.02370.06130.10210.059*
C210.0136 (4)0.0529 (2)0.1090 (2)0.0509 (11)
H210.05350.05450.14070.061*
C220.0683 (4)0.1209 (2)0.08395 (18)0.0437 (10)
H220.03500.16750.09950.052*
C230.2118 (3)0.0541 (2)0.01683 (17)0.0330 (8)
C240.3191 (3)0.05489 (19)0.03160 (17)0.0325 (8)
C250.2831 (4)0.3200 (2)0.16585 (19)0.0435 (9)
H250.19200.32850.16050.052*
C260.4842 (5)0.3404 (3)0.2277 (2)0.0818 (17)
H26A0.51810.30640.19570.123*
H26B0.49780.31790.26960.123*
H26C0.53040.38870.22600.123*
C270.2728 (6)0.4020 (3)0.2598 (2)0.0888 (19)
H27A0.18030.40430.24700.133*
H27B0.31030.45280.25910.133*
H27C0.28120.38140.30260.133*
C280.7594 (6)0.1871 (4)0.2296 (3)0.0913 (18)
H280.79350.18000.18880.110*
C290.9215 (7)0.2898 (4)0.2434 (3)0.125 (3)
H29A0.94570.27420.20090.187*
H29B0.99610.28260.27270.187*
H29C0.89640.34300.24280.187*
C300.7630 (5)0.2612 (3)0.3266 (2)0.0706 (14)
H30A0.68120.23410.33340.106*
H30B0.74770.31550.32980.106*
H30C0.82850.24580.35860.106*
C310.7195 (7)0.5191 (4)0.2607 (3)0.0947 (19)
H310.62790.52570.26380.114*
C320.9289 (7)0.5736 (6)0.2425 (4)0.176 (5)
H32A0.97360.58750.28220.265*
H32B0.95700.60720.20880.265*
H32C0.95060.52140.23180.265*
C330.7247 (9)0.6535 (4)0.2441 (3)0.163 (4)
H33A0.73050.67250.20090.245*
H33B0.76660.68940.27340.245*
H33C0.63270.64760.25470.245*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.03234 (12)0.02500 (11)0.03420 (12)0.00314 (9)0.00294 (8)0.00165 (9)
Cl10.0566 (6)0.0495 (6)0.0471 (6)0.0077 (5)0.0107 (5)0.0044 (5)
Cl20.0715 (8)0.0464 (6)0.0568 (7)0.0191 (5)0.0240 (6)0.0020 (5)
Cl30.0413 (5)0.0584 (7)0.0565 (6)0.0077 (5)0.0072 (5)0.0122 (5)
O10.0524 (17)0.0405 (15)0.0387 (15)0.0028 (12)0.0036 (13)0.0026 (12)
O20.125 (4)0.137 (4)0.128 (4)0.054 (3)0.008 (3)0.042 (3)
O30.154 (5)0.095 (4)0.182 (5)0.011 (3)0.047 (4)0.037 (3)
N10.0376 (18)0.0280 (16)0.0460 (19)0.0024 (13)0.0009 (15)0.0007 (14)
N20.0380 (18)0.0356 (18)0.046 (2)0.0034 (14)0.0009 (15)0.0005 (14)
N30.0353 (17)0.0339 (17)0.0373 (18)0.0038 (13)0.0059 (14)0.0009 (13)
N40.0363 (17)0.0318 (17)0.0372 (17)0.0019 (13)0.0058 (14)0.0023 (13)
N50.061 (2)0.051 (2)0.036 (2)0.0058 (17)0.0053 (17)0.0072 (16)
N60.069 (3)0.064 (3)0.077 (3)0.002 (2)0.013 (2)0.014 (2)
N70.139 (5)0.056 (3)0.055 (3)0.011 (3)0.005 (3)0.005 (2)
C10.040 (2)0.051 (3)0.085 (3)0.013 (2)0.001 (2)0.005 (2)
C20.033 (3)0.079 (4)0.099 (4)0.007 (2)0.001 (3)0.004 (3)
C30.039 (3)0.078 (4)0.075 (3)0.011 (2)0.010 (2)0.007 (3)
C40.049 (3)0.051 (3)0.040 (2)0.013 (2)0.0027 (19)0.0043 (19)
C50.066 (3)0.058 (3)0.050 (3)0.027 (2)0.010 (2)0.002 (2)
C60.079 (4)0.039 (2)0.061 (3)0.016 (2)0.004 (3)0.009 (2)
C70.063 (3)0.031 (2)0.044 (2)0.0052 (19)0.001 (2)0.0037 (17)
C80.083 (4)0.035 (2)0.072 (3)0.007 (2)0.005 (3)0.014 (2)
C90.060 (3)0.046 (3)0.075 (3)0.020 (2)0.002 (3)0.009 (2)
C100.042 (2)0.037 (2)0.057 (3)0.0067 (18)0.004 (2)0.0037 (19)
C110.046 (2)0.0257 (18)0.035 (2)0.0021 (16)0.0010 (18)0.0037 (15)
C120.041 (2)0.036 (2)0.036 (2)0.0059 (17)0.0014 (17)0.0055 (16)
C130.046 (2)0.033 (2)0.049 (2)0.0002 (17)0.010 (2)0.0032 (17)
C140.046 (2)0.049 (3)0.050 (3)0.0069 (19)0.011 (2)0.002 (2)
C150.050 (2)0.036 (2)0.044 (2)0.0122 (18)0.003 (2)0.0074 (17)
C160.046 (2)0.031 (2)0.036 (2)0.0074 (17)0.0035 (18)0.0010 (16)
C170.068 (3)0.026 (2)0.053 (3)0.0053 (19)0.005 (2)0.0012 (18)
C180.058 (3)0.029 (2)0.055 (3)0.0016 (18)0.001 (2)0.0068 (18)
C190.041 (2)0.033 (2)0.040 (2)0.0037 (16)0.0047 (18)0.0050 (16)
C200.053 (3)0.046 (3)0.050 (3)0.010 (2)0.005 (2)0.012 (2)
C210.048 (3)0.053 (3)0.051 (3)0.005 (2)0.015 (2)0.008 (2)
C220.046 (2)0.038 (2)0.046 (2)0.0038 (18)0.013 (2)0.0015 (18)
C230.0292 (19)0.035 (2)0.035 (2)0.0036 (15)0.0055 (16)0.0026 (16)
C240.036 (2)0.0276 (18)0.034 (2)0.0024 (15)0.0035 (17)0.0016 (15)
C250.045 (2)0.044 (2)0.041 (2)0.0005 (19)0.0059 (19)0.0025 (19)
C260.063 (3)0.124 (5)0.057 (3)0.015 (3)0.015 (3)0.008 (3)
C270.112 (5)0.093 (4)0.062 (4)0.009 (3)0.003 (3)0.030 (3)
C280.090 (5)0.102 (5)0.082 (4)0.007 (4)0.007 (4)0.018 (4)
C290.132 (6)0.112 (5)0.134 (6)0.038 (5)0.071 (5)0.032 (5)
C300.070 (3)0.070 (3)0.072 (3)0.000 (3)0.004 (3)0.002 (3)
C310.110 (5)0.089 (5)0.085 (4)0.009 (4)0.006 (4)0.023 (4)
C320.092 (6)0.277 (12)0.158 (8)0.051 (6)0.041 (5)0.131 (8)
C330.309 (12)0.073 (5)0.110 (6)0.048 (6)0.048 (7)0.017 (4)
Geometric parameters (Å, º) top
La1—O12.572 (3)C9—H90.93
La1—N32.694 (3)C10—H100.93
La1—N12.710 (3)C11—C121.440 (5)
La1—N42.721 (3)C13—C141.400 (5)
La1—N22.758 (3)C13—H130.93
La1—Cl22.7905 (10)C14—C151.355 (5)
La1—Cl12.7999 (10)C14—H140.93
La1—Cl32.8212 (10)C15—C161.402 (5)
O1—C251.237 (4)C15—H150.93
O2—C281.217 (7)C16—C241.411 (5)
O3—C311.213 (7)C16—C171.424 (5)
N1—C101.323 (4)C17—C181.342 (6)
N1—C111.366 (4)C17—H170.93
N2—C11.326 (5)C18—C191.430 (5)
N2—C121.361 (4)C18—H180.93
N3—C131.325 (4)C19—C201.404 (5)
N3—C241.365 (4)C19—C231.406 (5)
N4—C221.329 (4)C20—C211.355 (6)
N4—C231.356 (4)C20—H200.93
N5—C251.314 (5)C21—C221.399 (5)
N5—C261.445 (5)C21—H210.93
N5—C271.453 (6)C22—H220.93
N6—C281.310 (7)C23—C241.454 (5)
N6—C301.424 (6)C25—H250.93
N6—C291.455 (7)C26—H26A0.96
N7—C311.308 (7)C26—H26B0.96
N7—C321.397 (8)C26—H26C0.96
N7—C331.441 (8)C27—H27A0.96
C1—C21.405 (6)C27—H27B0.96
C1—H10.93C27—H27C0.96
C2—C31.365 (6)C28—H280.93
C2—H20.93C29—H29A0.96
C3—C41.389 (6)C29—H29B0.96
C3—H30.93C29—H29C0.96
C4—C121.403 (5)C30—H30A0.96
C4—C51.448 (6)C30—H30B0.96
C5—C61.337 (6)C30—H30C0.96
C5—H50.93C31—H310.93
C6—C71.424 (6)C32—H32A0.96
C6—H60.93C32—H32B0.96
C7—C81.398 (6)C32—H32C0.96
C7—C111.412 (5)C33—H33A0.96
C8—C91.375 (6)C33—H33B0.96
C8—H80.93C33—H33C0.96
C9—C101.384 (5)
O1—La1—N372.27 (8)N2—C12—C11118.4 (3)
O1—La1—N168.04 (9)C4—C12—C11119.3 (3)
N3—La1—N1139.37 (9)N3—C13—C14124.3 (3)
O1—La1—N4123.48 (8)N3—C13—H13117.9
N3—La1—N460.79 (9)C14—C13—H13117.9
N1—La1—N4154.78 (9)C15—C14—C13118.6 (4)
O1—La1—N264.66 (9)C15—C14—H14120.7
N3—La1—N295.27 (9)C13—C14—H14120.7
N1—La1—N260.07 (9)C14—C15—C16120.0 (3)
N4—La1—N2143.87 (9)C14—C15—H15120.0
O1—La1—Cl2138.37 (6)C16—C15—H15120.0
N3—La1—Cl2144.41 (7)C15—C16—C24117.5 (3)
N1—La1—Cl275.66 (7)C15—C16—C17122.8 (3)
N4—La1—Cl283.83 (6)C24—C16—C17119.7 (3)
N2—La1—Cl2113.34 (7)C18—C17—C16121.6 (4)
O1—La1—Cl1128.55 (6)C18—C17—H17119.2
N3—La1—Cl181.78 (7)C16—C17—H17119.2
N1—La1—Cl1116.93 (7)C17—C18—C19120.6 (3)
N4—La1—Cl175.24 (7)C17—C18—H18119.7
N2—La1—Cl174.76 (7)C19—C18—H18119.7
Cl2—La1—Cl185.70 (3)C20—C19—C23117.3 (3)
O1—La1—Cl373.96 (6)C20—C19—C18122.6 (3)
N3—La1—Cl388.78 (7)C23—C19—C18120.1 (3)
N1—La1—Cl388.48 (7)C21—C20—C19119.8 (4)
N4—La1—Cl375.32 (7)C21—C20—H20120.1
N2—La1—Cl3134.71 (7)C19—C20—H20120.1
Cl2—La1—Cl385.68 (4)C20—C21—C22119.1 (4)
Cl1—La1—Cl3150.02 (3)C20—C21—H21120.5
C25—O1—La1128.0 (2)C22—C21—H21120.5
C10—N1—C11118.1 (3)N4—C22—C21123.5 (4)
C10—N1—La1119.3 (2)N4—C22—H22118.3
C11—N1—La1121.1 (2)C21—C22—H22118.3
C1—N2—C12117.8 (3)N4—C23—C19123.1 (3)
C1—N2—La1121.3 (3)N4—C23—C24118.0 (3)
C12—N2—La1119.8 (2)C19—C23—C24118.9 (3)
C13—N3—C24117.0 (3)N3—C24—C16122.6 (3)
C13—N3—La1121.4 (2)N3—C24—C23118.4 (3)
C24—N3—La1121.6 (2)C16—C24—C23119.0 (3)
C22—N4—C23117.3 (3)O1—C25—N5125.7 (4)
C22—N4—La1121.5 (2)O1—C25—H25117.2
C23—N4—La1121.2 (2)N5—C25—H25117.2
C25—N5—C26120.0 (4)N5—C26—H26A109.5
C25—N5—C27122.0 (4)N5—C26—H26B109.5
C26—N5—C27118.0 (4)H26A—C26—H26B109.5
C28—N6—C30122.0 (5)N5—C26—H26C109.5
C28—N6—C29122.7 (5)H26A—C26—H26C109.5
C30—N6—C29115.3 (4)H26B—C26—H26C109.5
C31—N7—C32120.1 (6)N5—C27—H27A109.5
C31—N7—C33118.4 (7)N5—C27—H27B109.5
C32—N7—C33121.5 (6)H27A—C27—H27B109.5
N2—C1—C2123.4 (4)N5—C27—H27C109.5
N2—C1—H1118.3H27A—C27—H27C109.5
C2—C1—H1118.3H27B—C27—H27C109.5
C3—C2—C1118.4 (4)O2—C28—N6126.1 (6)
C3—C2—H2120.8O2—C28—H28116.9
C1—C2—H2120.8N6—C28—H28116.9
C2—C3—C4120.2 (4)N6—C29—H29A109.5
C2—C3—H3119.9N6—C29—H29B109.5
C4—C3—H3119.9H29A—C29—H29B109.5
C3—C4—C12118.0 (4)N6—C29—H29C109.5
C3—C4—C5122.7 (4)H29A—C29—H29C109.5
C12—C4—C5119.4 (4)H29B—C29—H29C109.5
C6—C5—C4120.6 (4)N6—C30—H30A109.5
C6—C5—H5119.7N6—C30—H30B109.5
C4—C5—H5119.7H30A—C30—H30B109.5
C5—C6—C7121.8 (4)N6—C30—H30C109.5
C5—C6—H6119.1H30A—C30—H30C109.5
C7—C6—H6119.1H30B—C30—H30C109.5
C8—C7—C11117.6 (4)O3—C31—N7124.9 (7)
C8—C7—C6123.4 (4)O3—C31—H31117.5
C11—C7—C6119.1 (4)N7—C31—H31117.5
C9—C8—C7120.1 (4)N7—C32—H32A109.5
C9—C8—H8120.0N7—C32—H32B109.5
C7—C8—H8120.0H32A—C32—H32B109.5
C8—C9—C10118.4 (4)N7—C32—H32C109.5
C8—C9—H9120.8H32A—C32—H32C109.5
C10—C9—H9120.8H32B—C32—H32C109.5
N1—C10—C9124.0 (4)N7—C33—H33A109.5
N1—C10—H10118.0N7—C33—H33B109.5
C9—C10—H10118.0H33A—C33—H33B109.5
N1—C11—C7121.8 (3)N7—C33—H33C109.5
N1—C11—C12118.4 (3)H33A—C33—H33C109.5
C7—C11—C12119.7 (3)H33B—C33—H33C109.5
N2—C12—C4122.3 (4)
N3—La1—O1—C25145.3 (3)C5—C6—C7—C8179.1 (4)
N1—La1—O1—C2543.6 (3)C5—C6—C7—C112.5 (7)
N4—La1—O1—C25110.9 (3)C11—C7—C8—C90.7 (6)
N2—La1—O1—C25109.8 (3)C6—C7—C8—C9177.7 (4)
Cl2—La1—O1—C2512.5 (4)C7—C8—C9—C100.3 (7)
Cl1—La1—O1—C25151.2 (3)C11—N1—C10—C90.7 (6)
Cl3—La1—O1—C2551.4 (3)La1—N1—C10—C9165.5 (3)
O1—La1—N1—C10105.8 (3)C8—C9—C10—N10.5 (7)
N3—La1—N1—C10118.8 (3)C10—N1—C11—C70.1 (5)
N4—La1—N1—C1016.9 (4)La1—N1—C11—C7165.8 (3)
N2—La1—N1—C10178.3 (3)C10—N1—C11—C12178.9 (3)
Cl2—La1—N1—C1053.4 (3)La1—N1—C11—C1213.0 (4)
Cl1—La1—N1—C10130.9 (3)C8—C7—C11—N10.6 (6)
Cl3—La1—N1—C1032.5 (3)C6—C7—C11—N1177.9 (4)
O1—La1—N1—C1159.9 (3)C8—C7—C11—C12178.2 (4)
N3—La1—N1—C1146.9 (3)C6—C7—C11—C123.3 (6)
N4—La1—N1—C11177.4 (2)C1—N2—C12—C40.2 (6)
N2—La1—N1—C1112.6 (2)La1—N2—C12—C4167.8 (3)
Cl2—La1—N1—C11140.8 (3)C1—N2—C12—C11179.1 (4)
Cl1—La1—N1—C1163.4 (3)La1—N2—C12—C1111.1 (4)
Cl3—La1—N1—C11133.2 (3)C3—C4—C12—N21.4 (6)
O1—La1—N2—C1101.3 (3)C5—C4—C12—N2179.2 (3)
N3—La1—N2—C133.7 (3)C3—C4—C12—C11177.5 (4)
N1—La1—N2—C1179.5 (3)C5—C4—C12—C111.9 (5)
N4—La1—N2—C111.4 (4)N1—C11—C12—N21.0 (5)
Cl2—La1—N2—C1124.6 (3)C7—C11—C12—N2177.8 (3)
Cl1—La1—N2—C146.2 (3)N1—C11—C12—C4179.9 (3)
Cl3—La1—N2—C1127.3 (3)C7—C11—C12—C41.2 (5)
O1—La1—N2—C1266.3 (3)C24—N3—C13—C140.8 (6)
N3—La1—N2—C12133.8 (3)La1—N3—C13—C14179.2 (3)
N1—La1—N2—C1211.9 (2)N3—C13—C14—C151.0 (6)
N4—La1—N2—C12179.0 (2)C13—C14—C15—C160.0 (6)
Cl2—La1—N2—C1267.9 (3)C14—C15—C16—C241.0 (6)
Cl1—La1—N2—C12146.2 (3)C14—C15—C16—C17179.0 (4)
Cl3—La1—N2—C1240.3 (3)C15—C16—C17—C18178.0 (4)
O1—La1—N3—C1333.8 (3)C24—C16—C17—C181.9 (6)
N1—La1—N3—C1321.1 (3)C16—C17—C18—C190.5 (6)
N4—La1—N3—C13178.9 (3)C17—C18—C19—C20179.0 (4)
N2—La1—N3—C1327.5 (3)C17—C18—C19—C230.9 (6)
Cl2—La1—N3—C13171.8 (2)C23—C19—C20—C210.1 (6)
Cl1—La1—N3—C13101.2 (3)C18—C19—C20—C21180.0 (4)
Cl3—La1—N3—C13107.3 (3)C19—C20—C21—C220.5 (6)
O1—La1—N3—C24146.2 (3)C23—N4—C22—C210.6 (6)
N1—La1—N3—C24158.9 (2)La1—N4—C22—C21179.8 (3)
N4—La1—N3—C241.2 (2)C20—C21—C22—N40.9 (6)
N2—La1—N3—C24152.5 (3)C22—N4—C23—C190.1 (5)
Cl2—La1—N3—C248.2 (3)La1—N4—C23—C19179.1 (3)
Cl1—La1—N3—C2478.8 (3)C22—N4—C23—C24179.3 (3)
Cl3—La1—N3—C2472.7 (3)La1—N4—C23—C241.5 (4)
O1—La1—N4—C22142.5 (3)C20—C19—C23—N40.5 (5)
N3—La1—N4—C22179.5 (3)C18—C19—C23—N4179.6 (3)
N1—La1—N4—C2231.9 (4)C20—C19—C23—C24179.0 (3)
N2—La1—N4—C22125.4 (3)C18—C19—C23—C241.0 (5)
Cl2—La1—N4—C223.6 (3)C13—N3—C24—C160.3 (5)
Cl1—La1—N4—C2290.7 (3)La1—N3—C24—C16179.7 (3)
Cl3—La1—N4—C2283.6 (3)C13—N3—C24—C23179.0 (3)
O1—La1—N4—C2336.7 (3)La1—N3—C24—C231.0 (4)
N3—La1—N4—C231.3 (2)C15—C16—C24—N31.2 (5)
N1—La1—N4—C23147.3 (2)C17—C16—C24—N3178.9 (3)
N2—La1—N4—C2355.4 (3)C15—C16—C24—C23178.1 (3)
Cl2—La1—N4—C23177.2 (3)C17—C16—C24—C231.8 (5)
Cl1—La1—N4—C2390.1 (2)N4—C23—C24—N30.3 (5)
Cl3—La1—N4—C2395.6 (3)C19—C23—C24—N3179.8 (3)
C12—N2—C1—C21.4 (7)N4—C23—C24—C16179.0 (3)
La1—N2—C1—C2166.4 (4)C19—C23—C24—C160.4 (5)
N2—C1—C2—C31.1 (8)La1—O1—C25—N5152.2 (3)
C1—C2—C3—C40.6 (8)C26—N5—C25—O11.7 (6)
C2—C3—C4—C121.7 (7)C27—N5—C25—O1178.4 (4)
C2—C3—C4—C5178.9 (4)C30—N6—C28—O21.9 (10)
C3—C4—C5—C6176.6 (4)C29—N6—C28—O2175.0 (7)
C12—C4—C5—C62.8 (6)C32—N7—C31—O31.7 (10)
C4—C5—C6—C70.6 (7)C33—N7—C31—O3178.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl3i0.932.803.662 (5)155
C14—H14···O20.932.573.322 (6)139
C22—H22···Cl20.932.783.524 (4)138
C29—H29A···Cl3i0.962.813.766 (6)176
C29—H29C···O30.962.423.319 (9)157
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[LaCl3(C12H8N2)2(C3H7NO)]·2C3H7NO
Mr824.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)10.0344 (11), 17.3861 (19), 20.768 (2)
β (°) 91.521 (1)
V3)3621.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.28 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.691, 0.800
No. of measured, independent and
observed [I > 2σ(I)] reflections
26591, 6738, 5246
Rint0.043
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.082, 1.01
No. of reflections6738
No. of parameters430
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.35

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
La1—O12.572 (3)La1—N22.758 (3)
La1—N32.694 (3)La1—Cl22.7905 (10)
La1—N12.710 (3)La1—Cl12.7999 (10)
La1—N42.721 (3)La1—Cl32.8212 (10)
O1—La1—N372.27 (8)N2—La1—Cl2113.34 (7)
O1—La1—N168.04 (9)O1—La1—Cl1128.55 (6)
N3—La1—N1139.37 (9)N3—La1—Cl181.78 (7)
O1—La1—N4123.48 (8)N1—La1—Cl1116.93 (7)
N3—La1—N460.79 (9)N4—La1—Cl175.24 (7)
N1—La1—N4154.78 (9)N2—La1—Cl174.76 (7)
O1—La1—N264.66 (9)Cl2—La1—Cl185.70 (3)
N3—La1—N295.27 (9)O1—La1—Cl373.96 (6)
N1—La1—N260.07 (9)N3—La1—Cl388.78 (7)
N4—La1—N2143.87 (9)N1—La1—Cl388.48 (7)
O1—La1—Cl2138.37 (6)N4—La1—Cl375.32 (7)
N3—La1—Cl2144.41 (7)N2—La1—Cl3134.71 (7)
N1—La1—Cl275.66 (7)Cl2—La1—Cl385.68 (4)
N4—La1—Cl283.83 (6)Cl1—La1—Cl3150.02 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl3i0.932.803.662 (5)155
C14—H14···O20.932.573.322 (6)139
C22—H22···Cl20.932.783.524 (4)138
C29—H29A···Cl3i0.962.813.766 (6)176
C29—H29C···O30.962.423.319 (9)157
Symmetry code: (i) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds