Download citation
Download citation
link to html
In the title compound, [Mg(C2H5NO2)2(H2O)4][Mg(H2O)6](SO4)2, the MgII atoms of both dications lie on inversion centres, and each of them is in an octa­hedral coordination environment. The glycine mol­ecule exists in the zwitterionic form. The [Mg(H2O)6]2+ and [Mg(C2H5NO2)2(H2O)4]2+ dications pack as alternate layers parallel to the ab plane, with the sulfate anions lying between them. The ions are linked to form a three-dimensional network by O—H...O and N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807052890/ci2471sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807052890/ci2471Isup2.hkl
Contains datablock I

CCDC reference: 672589

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.066
  • wR factor = 0.171
  • Data-to-parameter ratio = 9.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT088_ALERT_3_C Poor Data / Parameter Ratio .................... 9.94 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 2000 Deg. PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.35 PLAT731_ALERT_1_C Bond Calc 0.85(3), Rep 0.846(10) ...... 3.00 su-Ra O5 -H5B 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.84(3), Rep 0.842(10) ...... 3.00 su-Ra O5 -H5A 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.83(3), Rep 0.838(10) ...... 3.00 su-Ra O6 -H6B 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.84(3), Rep 0.838(10) ...... 3.00 su-Ra O6 -H6A 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.84(3), Rep 0.835(10) ...... 3.00 su-Ra O9 -H9B 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.84(3), Rep 0.844(10) ...... 3.00 su-Ra O10 -H10B 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.84(4), Rep 0.842(10) ...... 4.00 su-Ra O10 -H10A 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.83(3), Rep 0.837(10) ...... 3.00 su-Ra O11 -H11B 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.84(3), Rep 0.836(10) ...... 3.00 su-Ra O11 -H11A 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.84(3), Rep 0.840(10) ...... 3.00 su-Ra O5 -H5A 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.85(3), Rep 0.850(10) ...... 3.00 su-Ra O5 -H5B 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.84(3), Rep 0.840(10) ...... 3.00 su-Ra O6 -H6A 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.83(3), Rep 0.840(10) ...... 3.00 su-Ra O6 -H6B 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.84(3), Rep 0.840(10) ...... 3.00 su-Ra O9 -H9B 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.84(4), Rep 0.840(10) ...... 4.00 su-Ra O10 -H10A 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.84(3), Rep 0.840(10) ...... 3.00 su-Ra O10 -H10B 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.84(3), Rep 0.840(10) ...... 3.00 su-Ra O11 -H11A 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.83(3), Rep 0.840(10) ...... 3.00 su-Ra O11 -H11B 1.555 1.555
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 18
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 22 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 22 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The glycine molecule is found to form many compounds with metal sulfates, metal halogenides and acids. There are many examples in the literature on glycine metallic sulfates (Peterková et al., 1991; Fleck & Bohatý, 2005). We report here the crystal structure of the title magnesium sulfate complex, with glycine.

The asymmetric unit of the title compound consists of one-half each of [Mg(H2O)6]2+ and [Mg(C2H5NO2)2(H2O)4]2+ dications, and one SO42- anion (Fig. 1). The MgII atoms of both dications lie on inversion centres, and they are in an octahedral coordination environment. The Mg—O distances of the [Mg(H2O)6]2+ dication lie in the range 2.048 (2) Å-2.105 (2) Å (Table 1), which is in good agreement with the literature value [2.045 (4)–2.099 (4) Å; Baur, 1964]. In the [Mg(C2H5NO2)2(H2O)4]2+ dication, the MgII atom is coordinated by two O atoms from two glycine ligands, and four water molecules. The Mg—O distance [2.128 (2) Å] involving the glycine molecule is longer than that involving the water molecule (Table 1).

The [Mg(H2O)6]2+ and [Mg(C2H5NO2)2(H2O)4]2+ dications pack as alternate layers parallel to the ab plane, with the sulfate anions lying between them. The complex cations and sulfate anions are linked to form a three-dimensional network by O—H···O and N—H···O hydrogen bonds (Table 2).

In the crystal structure, the glycine molecule exists in the zwitterionic form, which is normal for compounds of amino acids with inorganic salts. There are also many examples in the literature of glycinum and glycinate compounds (Muller et al., 1994). The non-hydrogen atoms of the glycine molecule are coplanar, with the caboxylate C—O distances being 1.269 (4) Å [C1—O7] and 1.239 (4) Å [C1—O8].

Related literature top

For related literature, see: Baur (1964); Fleck & Bohatý (2005); Muller et al. (1994); Peterková et al. (1991).

Experimental top

Colourless single crystals of the title compound were grown from a saturated aqueous solution. Glycine (3 g, 1.6 mol) was added to 25 ml of magnesium sulfate heptahydrate (40 g, 6.5 mol) solution at 313 K using a constant temperature water both. The solution was continuously stirred upto complete dissolution of glycine and the temperature was raised to 318 K to avoid nucleation during the filtration of the solution. This solution was subjected to solvent evaporation at room temperature and after 10 days, white tabular form of crystals were collected.

Refinement top

C-bound H atoms were positioned geometrically (C—H = 0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The water H atoms were located and refined with distance restraints [O—H = 0.84 (1) Å and H···H = 1.37 (2) Å]. The three N—H distances were restrained to be equal.

Computing details top

Data collection: AED software/Program name? (Belletti, 2004); cell refinement: AED software/Program name? (Belletti, 2004); data reduction: AED software/Program name? (Belletti, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Atoms labelled with the suffixes a and b are generated by the symmetry operations (1 - x, -y, 1 - z) and (1 - x, 1 - y, -z), respectively. Only one sulfate anion is shown.
[Figure 2] Fig. 2. View of the crystal structure of the title compound.
Tetraaquadiglycinemagnesium(II) hexaaquamagnesium(II) bis(sulfate) top
Crystal data top
[Mg(C2H5NO2)2(H2O)4][Mg(H2O)6](SO4)2Z = 1
Mr = 571.04F(000) = 300
Triclinic, P1Dx = 1.775 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.988 (3) ÅCell parameters from 36 reflections
b = 6.783 (2) Åθ = 7.9–17.5°
c = 13.391 (2) ŵ = 0.41 mm1
α = 85.39 (2)°T = 293 K
β = 82.87 (2)°Block, colourless
γ = 82.88 (2)°0.21 × 0.19 × 0.16 mm
V = 534.4 (3) Å3
Data collection top
Siemens AED
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 1.5°
Graphite monochromatorh = 76
ω–2θ scansk = 68
1998 measured reflectionsl = 1216
1998 independent reflections1 standard reflections every 50 reflections
1992 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.1149P)2 + 0.6843P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.007
1998 reflectionsΔρmax = 0.94 e Å3
201 parametersΔρmin = 1.07 e Å3
18 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.37 (3)
Crystal data top
[Mg(C2H5NO2)2(H2O)4][Mg(H2O)6](SO4)2γ = 82.88 (2)°
Mr = 571.04V = 534.4 (3) Å3
Triclinic, P1Z = 1
a = 5.988 (3) ÅMo Kα radiation
b = 6.783 (2) ŵ = 0.41 mm1
c = 13.391 (2) ÅT = 293 K
α = 85.39 (2)°0.21 × 0.19 × 0.16 mm
β = 82.87 (2)°
Data collection top
Siemens AED
diffractometer
Rint = 0.000
1998 measured reflections1 standard reflections every 50 reflections
1998 independent reflections intensity decay: none
1992 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.06618 restraints
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.94 e Å3
1998 reflectionsΔρmin = 1.07 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01345 (11)0.91384 (10)0.18807 (5)0.0170 (3)
O10.1835 (4)1.0199 (3)0.12319 (18)0.0300 (6)
O20.0271 (4)0.7357 (3)0.13906 (17)0.0279 (6)
O30.2019 (4)1.0445 (3)0.20413 (17)0.0282 (6)
O40.0986 (4)0.8490 (4)0.28613 (17)0.0294 (6)
Mg10.50000.00000.50000.0184 (4)
O50.1910 (4)0.1538 (4)0.53615 (18)0.0318 (6)
H5B0.116 (6)0.206 (6)0.489 (2)0.044 (12)*
H5A0.101 (6)0.150 (7)0.5897 (17)0.046 (13)*
O60.4411 (4)0.0276 (4)0.34899 (15)0.0289 (6)
H6B0.326 (4)0.002 (6)0.327 (3)0.040 (12)*
H6A0.547 (4)0.032 (6)0.302 (2)0.033 (11)*
O70.6414 (4)0.2747 (3)0.47278 (16)0.0271 (6)
O80.9719 (4)0.3338 (5)0.3855 (2)0.0440 (8)
N10.3922 (5)0.5024 (5)0.3456 (2)0.0317 (7)
H2N0.314 (7)0.580 (6)0.304 (3)0.039 (11)*
H1N0.369 (10)0.555 (8)0.404 (3)0.069 (17)*
H3N0.330 (10)0.392 (6)0.351 (5)0.073 (18)*
C10.7621 (5)0.3521 (5)0.3988 (2)0.0238 (7)
C20.6414 (6)0.4810 (5)0.3195 (2)0.0285 (7)
H2A0.69360.61170.31270.034*
H2B0.67940.42210.25500.034*
Mg20.50000.50000.00000.0186 (4)
O90.2942 (4)0.3973 (3)0.12778 (17)0.0273 (6)
H9B0.178 (4)0.478 (4)0.139 (3)0.026 (10)*
H9A0.264 (6)0.281 (2)0.126 (4)0.055 (14)*
O100.7834 (4)0.3371 (4)0.04927 (17)0.0283 (6)
H10B0.885 (6)0.292 (6)0.005 (2)0.041 (12)*
H10A0.777 (9)0.249 (6)0.097 (3)0.067 (17)*
O110.5499 (4)0.7319 (4)0.0805 (2)0.0351 (6)
H11B0.462 (5)0.835 (4)0.092 (3)0.040 (12)*
H11A0.678 (4)0.740 (6)0.098 (4)0.054 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0201 (5)0.0216 (5)0.0101 (5)0.0058 (3)0.0018 (3)0.0006 (3)
O10.0306 (13)0.0290 (12)0.0293 (13)0.0113 (10)0.0076 (10)0.0004 (10)
O20.0299 (12)0.0317 (12)0.0255 (12)0.0102 (9)0.0044 (9)0.0095 (9)
O30.0299 (13)0.0316 (12)0.0204 (11)0.0002 (9)0.0013 (9)0.0032 (9)
O40.0335 (13)0.0385 (13)0.0173 (11)0.0045 (10)0.0091 (9)0.0022 (9)
Mg10.0209 (7)0.0262 (8)0.0090 (7)0.0065 (5)0.0031 (5)0.0016 (5)
O50.0248 (12)0.0476 (14)0.0208 (12)0.0000 (10)0.0015 (9)0.0021 (10)
O60.0265 (12)0.0520 (15)0.0109 (10)0.0142 (10)0.0034 (9)0.0020 (9)
O70.0350 (13)0.0319 (12)0.0158 (11)0.0122 (10)0.0032 (9)0.0034 (9)
O80.0279 (13)0.0605 (18)0.0419 (16)0.0090 (12)0.0067 (11)0.0176 (13)
N10.0319 (16)0.0396 (17)0.0240 (14)0.0035 (13)0.0102 (12)0.0045 (12)
C10.0296 (16)0.0278 (15)0.0160 (14)0.0101 (12)0.0050 (12)0.0009 (11)
C20.0323 (17)0.0359 (17)0.0172 (15)0.0078 (14)0.0018 (12)0.0034 (13)
Mg20.0230 (8)0.0219 (7)0.0124 (7)0.0054 (5)0.0050 (5)0.0015 (5)
O90.0310 (12)0.0282 (12)0.0227 (12)0.0086 (10)0.0001 (9)0.0011 (9)
O100.0315 (13)0.0344 (13)0.0171 (11)0.0021 (10)0.0032 (9)0.0016 (9)
O110.0277 (13)0.0348 (13)0.0475 (15)0.0036 (10)0.0113 (11)0.0199 (12)
Geometric parameters (Å, º) top
S1—O11.473 (2)N1—H1N0.87 (3)
S1—O31.474 (2)N1—H3N0.87 (3)
S1—O21.480 (2)C1—C21.517 (4)
S1—O41.482 (2)C2—H2A0.97
Mg1—O5i2.031 (2)C2—H2B0.97
Mg1—O52.031 (2)Mg2—O11ii2.048 (2)
Mg1—O6i2.085 (2)Mg2—O112.048 (2)
Mg1—O62.085 (2)Mg2—O10ii2.057 (2)
Mg1—O72.128 (2)Mg2—O102.057 (2)
Mg1—O7i2.128 (2)Mg2—O92.105 (2)
O5—H5B0.846 (10)Mg2—O9ii2.105 (2)
O5—H5A0.842 (10)O9—H9B0.835 (10)
O6—H6B0.838 (10)O9—H9A0.834 (10)
O6—H6A0.838 (10)O10—H10B0.844 (10)
O7—C11.269 (4)O10—H10A0.842 (10)
O8—C11.239 (4)O11—H11B0.837 (10)
N1—C21.481 (5)O11—H11A0.836 (10)
N1—H2N0.87 (3)
O1—S1—O3110.14 (14)O8—C1—O7125.9 (3)
O1—S1—O2109.60 (14)O8—C1—C2116.3 (3)
O3—S1—O2108.77 (14)O7—C1—C2117.8 (3)
O1—S1—O4109.55 (15)N1—C2—C1111.9 (3)
O3—S1—O4110.07 (14)N1—C2—H2A109.2
O2—S1—O4108.69 (14)C1—C2—H2A109.2
O5i—Mg1—O5180.00 (13)N1—C2—H2B109.2
O5i—Mg1—O6i89.18 (10)C1—C2—H2B109.2
O5—Mg1—O6i90.82 (10)H2A—C2—H2B107.9
O5i—Mg1—O690.82 (10)O11ii—Mg2—O11180.00 (13)
O5—Mg1—O689.18 (10)O11ii—Mg2—O10ii89.87 (10)
O6i—Mg1—O6180.0O11—Mg2—O10ii90.13 (10)
O5i—Mg1—O790.78 (10)O11ii—Mg2—O1090.13 (10)
O5—Mg1—O789.22 (10)O11—Mg2—O1089.87 (10)
O6i—Mg1—O792.84 (9)O10ii—Mg2—O10180.00 (12)
O6—Mg1—O787.16 (9)O11ii—Mg2—O992.24 (11)
O5i—Mg1—O7i89.22 (10)O11—Mg2—O987.76 (11)
O5—Mg1—O7i90.78 (10)O10ii—Mg2—O988.69 (10)
O6i—Mg1—O7i87.16 (9)O10—Mg2—O991.31 (10)
O6—Mg1—O7i92.84 (9)O11ii—Mg2—O9ii87.76 (11)
O7—Mg1—O7i180.0O11—Mg2—O9ii92.24 (11)
Mg1—O5—H5B119 (3)O10ii—Mg2—O9ii91.31 (10)
Mg1—O5—H5A131 (3)O10—Mg2—O9ii88.69 (10)
H5B—O5—H5A108 (2)O9—Mg2—O9ii180.00 (15)
Mg1—O6—H6B125 (3)Mg2—O9—H9B110 (3)
Mg1—O6—H6A122 (2)Mg2—O9—H9A115 (3)
H6B—O6—H6A110 (2)H9B—O9—H9A112 (3)
C1—O7—Mg1133.9 (2)Mg2—O10—H10B117 (3)
C2—N1—H2N116 (3)Mg2—O10—H10A123 (3)
C2—N1—H1N105 (4)H10B—O10—H10A106 (2)
H2N—N1—H1N107 (5)Mg2—O11—H11B128 (3)
C2—N1—H3N115 (4)Mg2—O11—H11A120 (3)
H2N—N1—H3N104 (5)H11B—O11—H11A111 (2)
H1N—N1—H3N109 (6)
O5i—Mg1—O7—C153.2 (3)Mg1—O7—C1—O890.2 (4)
O5—Mg1—O7—C1126.8 (3)Mg1—O7—C1—C290.6 (4)
O6i—Mg1—O7—C1142.4 (3)O8—C1—C2—N1176.7 (3)
O6—Mg1—O7—C137.6 (3)O7—C1—C2—N12.6 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O7iii0.87 (3)2.08 (5)2.939 (4)168 (4)
N1—H2N···O40.87 (3)2.12 (4)2.877 (4)145 (4)
N1—H3N···O60.87 (3)2.48 (4)3.195 (5)140 (5)
N1—H3N···O8iv0.87 (3)2.21 (6)2.865 (4)131 (4)
O5—H5A···O4v0.84 (1)1.92 (3)2.765 (4)178 (6)
O5—H5B···O8iv0.85 (1)1.83 (3)2.673 (4)175 (3)
O6—H6A···O3vi0.84 (1)1.87 (3)2.710 (4)176 (3)
O6—H6B···O4vii0.84 (1)1.95 (3)2.755 (4)163 (4)
O9—H9A···O1vii0.83 (1)1.90 (2)2.730 (3)178 (5)
O9—H9B···O20.84 (1)2.01 (3)2.808 (3)160 (3)
O10—H10A···O3vi0.84 (1)1.92 (4)2.755 (4)174 (5)
O10—H10B···O2ii0.84 (1)2.02 (3)2.800 (4)153 (3)
O11—H11A···O2viii0.84 (1)1.91 (3)2.747 (4)175 (4)
O11—H11B···O10.84 (1)1.98 (3)2.786 (4)162 (3)
Symmetry codes: (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x, y+1, z+1; (vi) x+1, y1, z; (vii) x, y1, z; (viii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Mg(C2H5NO2)2(H2O)4][Mg(H2O)6](SO4)2
Mr571.04
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.988 (3), 6.783 (2), 13.391 (2)
α, β, γ (°)85.39 (2), 82.87 (2), 82.88 (2)
V3)534.4 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.21 × 0.19 × 0.16
Data collection
DiffractometerSiemens AED
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1998, 1998, 1992
Rint0.000
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.171, 1.16
No. of reflections1998
No. of parameters201
No. of restraints18
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.94, 1.07

Computer programs: AED software/Program name? (Belletti, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Selected bond lengths (Å) top
Mg1—O52.031 (2)Mg2—O112.048 (2)
Mg1—O62.085 (2)Mg2—O102.057 (2)
Mg1—O72.128 (2)Mg2—O92.105 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O7i0.87 (3)2.08 (5)2.939 (4)168 (4)
N1—H2N···O40.87 (3)2.12 (4)2.877 (4)145 (4)
N1—H3N···O60.87 (3)2.48 (4)3.195 (5)140 (5)
N1—H3N···O8ii0.87 (3)2.21 (6)2.865 (4)131 (4)
O5—H5A···O4iii0.84 (1)1.92 (3)2.765 (4)178 (6)
O5—H5B···O8ii0.85 (1)1.83 (3)2.673 (4)175 (3)
O6—H6A···O3iv0.84 (1)1.87 (3)2.710 (4)176 (3)
O6—H6B···O4v0.84 (1)1.95 (3)2.755 (4)163 (4)
O9—H9A···O1v0.83 (1)1.90 (2)2.730 (3)178 (5)
O9—H9B···O20.84 (1)2.01 (3)2.808 (3)160 (3)
O10—H10A···O3iv0.84 (1)1.92 (4)2.755 (4)174 (5)
O10—H10B···O2vi0.84 (1)2.02 (3)2.800 (4)153 (3)
O11—H11A···O2vii0.84 (1)1.91 (3)2.747 (4)175 (4)
O11—H11B···O10.84 (1)1.98 (3)2.786 (4)162 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x+1, y1, z; (v) x, y1, z; (vi) x+1, y+1, z; (vii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds