Download citation
Download citation
link to html
In the title compound, [Ni(C14H19N2O)(NCS)], a mononuclear Schiff base nickel(II) complex, the Ni atom is four-coordinated by one imine N atom, one amine N atom and one phenolate O atom of the Schiff base ligand, and by one terminal N atom of the thio­cyanate ligand, forming a square-planar geometry. The piperidine ring adopts a chair conformation. No significant hydrogen bonding or π–π inter­actions are observed in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807029340/ci2396sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807029340/ci2396Isup2.hkl
Contains datablock I

CCDC reference: 654790

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.043
  • wR factor = 0.107
  • Data-to-parameter ratio = 18.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for S1 - C15 .. 6.10 su
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni1 (3) 2.75
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Nickel(II) complexes derived from Schiff base ligands have been studied extensively due to their interesting structures and numerous applications (Mukhopadhyay et al., 2003; Kraihanzel et al., 1981; Di Bella et al., 1997; Loeb et al., 1984; Costes et al., 2005). Previously, the author has reported the crystal structure of a Schiff base zinc(II) complex (Wang, 2007). As part of a further investigation of Schiff base complexes, the structure of the title compound, a mononuclear nickel(II) complex, is reported here.

The square-planar coordination environment of NiII atom in the title compound is formed by one imine N atom, one amine N atom, and one phenolate O atom of the Schiff base ligand, and by one terminal N atom of the thiocyanate ligand (Fig. 1). The coordination bond distances (Table 1) are typical and comparable with the values in similar nickel(II) complexes (Zhu et al., 2004; Liu et al., 2006; Fu et al., 2007).

Related literature top

For related literature, see: Costes et al. (2005); Di Bella et al. (1997); Fu et al. (2007); Kraihanzel et al. (1981); Liu et al. (2006); Loeb et al. (1984); Mukhopadhyay et al. (2003); Wang (2007); Zhu et al. (2004).

Experimental top

The title compound was obtained by stirring of salicylaldehyde (0.1 mmol, 12.1 mg), 2-piperidin-1-ylethylamine (0.1 mmol, 12.8 mg), ammonium thiocyanate (0.1 mmol, 7.6 mg), and nickel(II) nitrate (0.1 mmol, 29.1 mg) in methanol (20 ml) for 30 min. The reaction mixture was then filtered. Red block-shaped single crystals suitable for X-ray diffraction were formed from the filtrate after 5 d.

Refinement top

H atoms were positioned geometrically (C—H = 0.93 or 0.97 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Structure description top

Nickel(II) complexes derived from Schiff base ligands have been studied extensively due to their interesting structures and numerous applications (Mukhopadhyay et al., 2003; Kraihanzel et al., 1981; Di Bella et al., 1997; Loeb et al., 1984; Costes et al., 2005). Previously, the author has reported the crystal structure of a Schiff base zinc(II) complex (Wang, 2007). As part of a further investigation of Schiff base complexes, the structure of the title compound, a mononuclear nickel(II) complex, is reported here.

The square-planar coordination environment of NiII atom in the title compound is formed by one imine N atom, one amine N atom, and one phenolate O atom of the Schiff base ligand, and by one terminal N atom of the thiocyanate ligand (Fig. 1). The coordination bond distances (Table 1) are typical and comparable with the values in similar nickel(II) complexes (Zhu et al., 2004; Liu et al., 2006; Fu et al., 2007).

For related literature, see: Costes et al. (2005); Di Bella et al. (1997); Fu et al. (2007); Kraihanzel et al. (1981); Liu et al. (2006); Loeb et al. (1984); Mukhopadhyay et al. (2003); Wang (2007); Zhu et al. (2004).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing the numbering scheme and displacement ellipsoids drawn at the 30% probability level
{2-[2-(Piperidin-1-yl)ethyliminomethyl]phenolato-κ3N,N',O}(thiocyanato- κN)nickel(II) top
Crystal data top
[Ni(C14H19N2O)(NCS)]F(000) = 1456
Mr = 348.10Dx = 1.465 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3068 reflections
a = 12.997 (3) Åθ = 2.5–25.4°
b = 12.525 (3) ŵ = 1.36 mm1
c = 19.386 (4) ÅT = 298 K
V = 3155.8 (11) Å3Block, red
Z = 80.37 × 0.32 × 0.30 mm
Data collection top
Bruker SMART APEX area-detector
diffractometer
3587 independent reflections
Radiation source: fine-focus sealed tube2494 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.618, Tmax = 0.670k = 1616
18388 measured reflectionsl = 1625
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0516P)2]
where P = (Fo2 + 2Fc2)/3
3587 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Ni(C14H19N2O)(NCS)]V = 3155.8 (11) Å3
Mr = 348.10Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.997 (3) ŵ = 1.36 mm1
b = 12.525 (3) ÅT = 298 K
c = 19.386 (4) Å0.37 × 0.32 × 0.30 mm
Data collection top
Bruker SMART APEX area-detector
diffractometer
3587 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2494 reflections with I > 2σ(I)
Tmin = 0.618, Tmax = 0.670Rint = 0.054
18388 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.02Δρmax = 0.51 e Å3
3587 reflectionsΔρmin = 0.35 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.11596 (2)0.56364 (3)0.162861 (19)0.03658 (13)
S10.00585 (8)0.49582 (7)0.38329 (4)0.0652 (3)
O10.05319 (15)0.43892 (14)0.13658 (11)0.0459 (5)
N10.18173 (17)0.58278 (17)0.07974 (12)0.0409 (6)
N20.18420 (15)0.69534 (17)0.19361 (12)0.0373 (5)
N30.05700 (18)0.54126 (18)0.25004 (14)0.0465 (6)
C10.1120 (2)0.4304 (2)0.01950 (16)0.0428 (7)
C20.0550 (2)0.3924 (2)0.07622 (15)0.0382 (6)
C30.0010 (2)0.2974 (2)0.06736 (16)0.0455 (7)
H30.03930.27070.10400.055*
C40.0004 (2)0.2436 (2)0.00622 (16)0.0508 (8)
H40.03790.18070.00210.061*
C50.0552 (2)0.2813 (3)0.05009 (17)0.0563 (9)
H50.05520.24420.09170.068*
C60.1096 (2)0.3739 (3)0.04300 (16)0.0523 (8)
H60.14610.40010.08060.063*
C70.1740 (2)0.5242 (2)0.02556 (16)0.0462 (7)
H70.21190.54460.01290.055*
C80.2543 (2)0.6728 (2)0.07842 (17)0.0511 (8)
H8A0.25660.70430.03270.061*
H8B0.32290.64870.09050.061*
C90.2168 (2)0.7523 (2)0.12972 (14)0.0475 (7)
H9A0.15910.79170.11070.057*
H9B0.27120.80260.14050.057*
C100.2741 (2)0.6595 (2)0.23558 (16)0.0450 (7)
H10A0.32010.61860.20630.054*
H10B0.24970.61230.27180.054*
C110.3344 (2)0.7504 (3)0.26836 (16)0.0535 (8)
H11A0.36690.79250.23250.064*
H11B0.38810.72120.29750.064*
C120.2646 (2)0.8218 (3)0.31126 (18)0.0597 (9)
H12A0.23780.78220.35030.072*
H12B0.30350.88220.32870.072*
C130.1766 (2)0.8611 (2)0.26675 (17)0.0512 (8)
H13A0.13020.90400.29450.061*
H13B0.20340.90580.23010.061*
C140.11822 (19)0.7684 (2)0.23584 (16)0.0422 (7)
H14A0.08680.72770.27280.051*
H14B0.06340.79610.20700.051*
C150.0307 (2)0.5216 (2)0.30525 (16)0.0405 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0351 (2)0.0358 (2)0.0388 (2)0.00503 (14)0.00431 (15)0.00423 (16)
S10.0955 (7)0.0548 (5)0.0454 (5)0.0077 (5)0.0229 (5)0.0067 (4)
O10.0569 (13)0.0419 (11)0.0388 (12)0.0127 (9)0.0085 (10)0.0004 (9)
N10.0376 (12)0.0401 (13)0.0448 (15)0.0040 (10)0.0058 (11)0.0084 (11)
N20.0307 (11)0.0364 (12)0.0448 (14)0.0035 (9)0.0010 (10)0.0048 (11)
N30.0522 (15)0.0421 (14)0.0451 (16)0.0119 (11)0.0063 (12)0.0000 (12)
C10.0447 (16)0.0452 (17)0.0386 (17)0.0032 (13)0.0001 (13)0.0036 (14)
C20.0373 (14)0.0391 (15)0.0380 (17)0.0060 (12)0.0026 (12)0.0036 (13)
C30.0475 (16)0.0443 (16)0.0448 (18)0.0041 (13)0.0035 (14)0.0025 (15)
C40.0528 (17)0.0485 (18)0.051 (2)0.0015 (15)0.0117 (16)0.0030 (16)
C50.066 (2)0.060 (2)0.042 (2)0.0033 (17)0.0084 (16)0.0080 (16)
C60.0557 (18)0.064 (2)0.0369 (18)0.0027 (16)0.0013 (14)0.0019 (16)
C70.0455 (17)0.0488 (17)0.0441 (18)0.0010 (14)0.0128 (14)0.0110 (15)
C80.0512 (17)0.0498 (19)0.052 (2)0.0133 (14)0.0111 (15)0.0096 (15)
C90.0443 (16)0.0425 (16)0.056 (2)0.0094 (13)0.0004 (14)0.0098 (16)
C100.0353 (14)0.0427 (16)0.057 (2)0.0033 (12)0.0036 (13)0.0043 (14)
C110.0348 (14)0.063 (2)0.062 (2)0.0071 (14)0.0099 (14)0.0069 (18)
C120.0524 (19)0.061 (2)0.066 (2)0.0174 (16)0.0054 (16)0.0108 (17)
C130.0463 (16)0.0372 (16)0.070 (2)0.0025 (13)0.0010 (16)0.0051 (15)
C140.0330 (13)0.0384 (16)0.055 (2)0.0009 (11)0.0015 (13)0.0005 (14)
C150.0441 (15)0.0291 (14)0.0484 (19)0.0019 (12)0.0036 (14)0.0033 (14)
Geometric parameters (Å, º) top
Ni1—O11.8344 (19)C6—H60.93
Ni1—N11.840 (2)C7—H70.93
Ni1—N31.877 (3)C8—C91.490 (4)
Ni1—N21.965 (2)C8—H8A0.97
S1—C151.619 (3)C8—H8B0.97
O1—C21.307 (3)C9—H9A0.97
N1—C71.285 (4)C9—H9B0.97
N1—C81.470 (3)C10—C111.521 (4)
N2—C91.491 (3)C10—H10A0.97
N2—C101.493 (3)C10—H10B0.97
N2—C141.498 (3)C11—C121.522 (4)
N3—C151.150 (3)C11—H11A0.97
C1—C61.404 (4)C11—H11B0.97
C1—C21.409 (4)C12—C131.515 (4)
C1—C71.429 (4)C12—H12A0.97
C2—C31.405 (4)C12—H12B0.97
C3—C41.363 (4)C13—C141.511 (4)
C3—H30.93C13—H13A0.97
C4—C51.392 (4)C13—H13B0.97
C4—H40.93C14—H14A0.97
C5—C61.365 (4)C14—H14B0.97
C5—H50.93
O1—Ni1—N194.26 (10)N1—C8—H8B110.3
O1—Ni1—N386.63 (9)C9—C8—H8B110.3
N1—Ni1—N3176.32 (10)H8A—C8—H8B108.6
O1—Ni1—N2178.33 (9)C8—C9—N2109.1 (2)
N1—Ni1—N286.94 (10)C8—C9—H9A109.9
N3—Ni1—N292.09 (10)N2—C9—H9A109.9
C2—O1—Ni1128.31 (18)C8—C9—H9B109.9
C7—N1—C8118.3 (2)N2—C9—H9B109.9
C7—N1—Ni1127.2 (2)H9A—C9—H9B108.3
C8—N1—Ni1114.41 (19)N2—C10—C11113.9 (2)
C9—N2—C10112.0 (2)N2—C10—H10A108.8
C9—N2—C14108.9 (2)C11—C10—H10A108.8
C10—N2—C14109.5 (2)N2—C10—H10B108.8
C9—N2—Ni1106.12 (17)C11—C10—H10B108.8
C10—N2—Ni1105.41 (16)H10A—C10—H10B107.7
C14—N2—Ni1114.86 (15)C10—C11—C12111.2 (2)
C15—N3—Ni1172.4 (2)C10—C11—H11A109.4
C6—C1—C2119.4 (3)C12—C11—H11A109.4
C6—C1—C7119.9 (3)C10—C11—H11B109.4
C2—C1—C7120.7 (3)C12—C11—H11B109.4
O1—C2—C3118.5 (3)H11A—C11—H11B108.0
O1—C2—C1123.9 (3)C13—C12—C11109.3 (3)
C3—C2—C1117.6 (3)C13—C12—H12A109.8
C4—C3—C2121.5 (3)C11—C12—H12A109.8
C4—C3—H3119.3C13—C12—H12B109.8
C2—C3—H3119.3C11—C12—H12B109.8
C3—C4—C5121.1 (3)H12A—C12—H12B108.3
C3—C4—H4119.4C14—C13—C12110.8 (2)
C5—C4—H4119.4C14—C13—H13A109.5
C6—C5—C4118.6 (3)C12—C13—H13A109.5
C6—C5—H5120.7C14—C13—H13B109.5
C4—C5—H5120.7C12—C13—H13B109.5
C5—C6—C1121.8 (3)H13A—C13—H13B108.1
C5—C6—H6119.1N2—C14—C13113.5 (2)
C1—C6—H6119.1N2—C14—H14A108.9
N1—C7—C1125.5 (3)C13—C14—H14A108.9
N1—C7—H7117.3N2—C14—H14B108.9
C1—C7—H7117.3C13—C14—H14B108.9
N1—C8—C9106.9 (2)H14A—C14—H14B107.7
N1—C8—H8A110.3N3—C15—S1179.2 (3)
C9—C8—H8A110.3

Experimental details

Crystal data
Chemical formula[Ni(C14H19N2O)(NCS)]
Mr348.10
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)12.997 (3), 12.525 (3), 19.386 (4)
V3)3155.8 (11)
Z8
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.37 × 0.32 × 0.30
Data collection
DiffractometerBruker SMART APEX area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.618, 0.670
No. of measured, independent and
observed [I > 2σ(I)] reflections
18388, 3587, 2494
Rint0.054
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.107, 1.02
No. of reflections3587
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.35

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXL97.

Selected geometric parameters (Å, º) top
Ni1—O11.8344 (19)Ni1—N31.877 (3)
Ni1—N11.840 (2)Ni1—N21.965 (2)
O1—Ni1—N194.26 (10)O1—Ni1—N2178.33 (9)
O1—Ni1—N386.63 (9)N1—Ni1—N286.94 (10)
N1—Ni1—N3176.32 (10)N3—Ni1—N292.09 (10)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds