Download citation
Download citation
link to html
The title compound, C16H12N6O4, was synthesized by the reaction of 6-amino-1,3-dimethyl­pyrimidine-2,4(1H,3H)-dione and 4-nitro­benzaldehyde with malononitrile in water in the presence of triethyl­benzyl­ammonium chloride at 363 K. X-ray analysis reveals that the pyrimidine ring adopts a flattened envelope conformation. The dihedral angle between the pyridine and benzene rings is 81.83 (3)°. Mol­ecules are linked by N—H...O, C—H...O and C—H...N hydrogen bonds, forming a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807019356/ci2368sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807019356/ci2368Isup2.hkl
Contains datablock I

CCDC reference: 647687

Key indicators

  • Single-crystal X-ray study
  • T = 193 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.046
  • wR factor = 0.122
  • Data-to-parameter ratio = 14.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT230_ALERT_2_C Hirshfeld Test Diff for O3 - N6 .. 5.14 su PLAT230_ALERT_2_C Hirshfeld Test Diff for C4 - C14 .. 5.33 su PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C4 - C14 ... 1.43 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact N4 .. C6 .. 2.99 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The importance of uracil and its annelated derivatives is well recognized in synthetic (Sasaki et al., 1980; Bhuyan et al., 1999) as well as biological (Griengl et al., 1987; Pontikis et al., 1994) chemistry. With the development of clinically useful anticancer and antiviral drugs (Clercq et al., 1986; Jones et al., 1979), there has recently been remarkable interest in the synthetic manipulations of uracils (Hirota et al., 1981). Pyrido[2,3-d]pyrimidines represent a heterocyclic ring system of considerable interest because of several biological activities associated with this scaffold. Some analogues have been found to act as anticancer agents inhibiting dihydrofolate reductases or tyrosine kinases (Gangjee et al., 1999), while others are known antiviral agents (Nasr et al., 2002). We report here the crystal structure of the title compound, (I).

The pyrimidine ring adopts a flattened envelope conformation, with atom C6 deviating from the C1/C2/C7/N2/N3 plane by 0.144 (2) Å (Fig. 1). The dihedral angle between the C1—C5/N1 and C1/C2/C7/N2/N3 planes is 0.56 (7)°. The dihedral angle between the pyridine and benzene rings is 81.83 (3)°. The nitro group is coplanar with the attached benzene ring.

In the crystal structure, the molecules are linked to form a three-dimensional network (Fig. 2) by N—H···O, C—H···O and C—H···N type hydrogen bonds (Table 1).

Related literature top

For general background, see: Bhuyan et al. (1999); Clercq (1986); Gangjee et al. (1999); Griengl et al. (1987); Hirota et al. (1981); Jones et al. (1979); Nasr & Gineinah (2002); Pontikis & Monneret (1994); Sasaki et al. (1980).

Experimental top

Compound (I) was prepared by the reaction of 6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (2 mmol) and 4-nitrobenzaldehyde (2 mmol) with malononitrile (2 mmol) in water (10 ml) in the presence of triethylbenzylammonium chloride (0.15 g) at 363 K. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

Amino H atoms were located in a difference map and refined freely. C-bound H atoms were placed in calculated positions, with C—H = 0.95 or 0.98 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2–1.5(methyl)Ueq(C).

Structure description top

The importance of uracil and its annelated derivatives is well recognized in synthetic (Sasaki et al., 1980; Bhuyan et al., 1999) as well as biological (Griengl et al., 1987; Pontikis et al., 1994) chemistry. With the development of clinically useful anticancer and antiviral drugs (Clercq et al., 1986; Jones et al., 1979), there has recently been remarkable interest in the synthetic manipulations of uracils (Hirota et al., 1981). Pyrido[2,3-d]pyrimidines represent a heterocyclic ring system of considerable interest because of several biological activities associated with this scaffold. Some analogues have been found to act as anticancer agents inhibiting dihydrofolate reductases or tyrosine kinases (Gangjee et al., 1999), while others are known antiviral agents (Nasr et al., 2002). We report here the crystal structure of the title compound, (I).

The pyrimidine ring adopts a flattened envelope conformation, with atom C6 deviating from the C1/C2/C7/N2/N3 plane by 0.144 (2) Å (Fig. 1). The dihedral angle between the C1—C5/N1 and C1/C2/C7/N2/N3 planes is 0.56 (7)°. The dihedral angle between the pyridine and benzene rings is 81.83 (3)°. The nitro group is coplanar with the attached benzene ring.

In the crystal structure, the molecules are linked to form a three-dimensional network (Fig. 2) by N—H···O, C—H···O and C—H···N type hydrogen bonds (Table 1).

For general background, see: Bhuyan et al. (1999); Clercq (1986); Gangjee et al. (1999); Griengl et al. (1987); Hirota et al. (1981); Jones et al. (1979); Nasr & Gineinah (2002); Pontikis & Monneret (1994); Sasaki et al. (1980).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of (I). Hydrogen bonds are shown as dashed lines.
7-Amino-1,3-dimethyl-5-(4-nitrophenyl)-2,4-dioxo-1,2,3,4- tetrahydropyrido[2,3-d]pyrimidine-6-carbonitrile top
Crystal data top
C16H12N6O4F(000) = 728
Mr = 352.32Dx = 1.493 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ynCell parameters from 6117 reflections
a = 9.6209 (9) Åθ = 3.1–27.5°
b = 11.7064 (12) ŵ = 0.11 mm1
c = 14.5493 (16) ÅT = 193 K
β = 106.939 (3)°Block, gold
V = 1567.5 (3) Å30.60 × 0.40 × 0.32 mm
Z = 4
Data collection top
Rigaku Mercury
diffractometer
3595 independent reflections
Radiation source: fine-focus sealed tube3259 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 7.31 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scansh = 1210
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1514
Tmin = 0.936, Tmax = 0.965l = 1818
17123 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0637P)2 + 0.3577P]
where P = (Fo2 + 2Fc2)/3
3595 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C16H12N6O4V = 1567.5 (3) Å3
Mr = 352.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.6209 (9) ŵ = 0.11 mm1
b = 11.7064 (12) ÅT = 193 K
c = 14.5493 (16) Å0.60 × 0.40 × 0.32 mm
β = 106.939 (3)°
Data collection top
Rigaku Mercury
diffractometer
3595 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
3259 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.965Rint = 0.021
17123 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.24 e Å3
3595 reflectionsΔρmin = 0.25 e Å3
246 parameters
Special details top

Experimental. 1H NMR (DMSO-d6, δ): 3.08 (3H, s, CH3), 3.51 (3H, s, CH3), 7.57 (2H, d, J = 8.8 Hz, ArH), 8.02 (2H, s, NH2), 8.32 (2H, d, J = 8.8 Hz, ArH).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40040 (11)0.58289 (9)0.61943 (7)0.0371 (3)
O20.27711 (11)0.53458 (9)0.89364 (8)0.0408 (3)
O30.40782 (12)0.88345 (11)0.25427 (7)0.0449 (3)
O40.58170 (12)0.76386 (10)0.26221 (7)0.0434 (3)
N10.62792 (11)0.80081 (9)0.90036 (7)0.0271 (2)
N20.32494 (12)0.57102 (9)0.75276 (8)0.0297 (3)
N30.45263 (12)0.66590 (10)0.89615 (7)0.0293 (3)
N40.86032 (13)0.96383 (11)0.68190 (8)0.0362 (3)
N50.81041 (13)0.93043 (10)0.91201 (8)0.0324 (3)
N60.50203 (12)0.81687 (10)0.29905 (8)0.0314 (3)
C10.53176 (13)0.72749 (11)0.84755 (9)0.0254 (3)
C20.50682 (13)0.70913 (11)0.74838 (9)0.0250 (3)
C30.58756 (13)0.77512 (10)0.70202 (8)0.0232 (3)
C40.69181 (13)0.84923 (10)0.75676 (8)0.0252 (3)
C50.71081 (13)0.85990 (11)0.85729 (8)0.0255 (3)
C60.40912 (14)0.61853 (11)0.70021 (9)0.0273 (3)
C70.34766 (14)0.58771 (12)0.85086 (10)0.0306 (3)
C80.56079 (13)0.77645 (10)0.59552 (8)0.0233 (3)
C90.44885 (14)0.84520 (11)0.54105 (9)0.0276 (3)
H90.38610.88320.57080.033*
C100.42892 (14)0.85827 (11)0.44323 (9)0.0279 (3)
H100.35360.90570.40550.033*
C110.52071 (14)0.80098 (11)0.40213 (8)0.0260 (3)
C120.63132 (14)0.73093 (11)0.45431 (9)0.0291 (3)
H120.69160.69120.42360.035*
C130.65246 (14)0.71979 (11)0.55214 (9)0.0277 (3)
H130.72930.67360.58960.033*
C140.78334 (13)0.91355 (11)0.71367 (9)0.0267 (3)
C150.21570 (17)0.48538 (13)0.70592 (12)0.0409 (4)
H15A0.18770.49650.63620.061*
H15B0.12990.49380.72880.061*
H15C0.25650.40870.72160.061*
C160.48811 (17)0.67789 (15)1.00141 (10)0.0394 (3)
H16A0.42230.63011.02510.059*
H16B0.47690.75791.01770.059*
H16C0.58870.65371.03130.059*
H5A0.8264 (18)0.9259 (15)0.9718 (13)0.038 (4)*
H5B0.877 (2)0.9721 (17)0.8866 (14)0.056 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0469 (6)0.0400 (6)0.0246 (5)0.0109 (4)0.0107 (4)0.0044 (4)
O20.0414 (6)0.0428 (6)0.0466 (6)0.0009 (5)0.0259 (5)0.0087 (5)
O30.0447 (6)0.0592 (7)0.0266 (5)0.0033 (5)0.0037 (4)0.0130 (5)
O40.0593 (7)0.0475 (6)0.0273 (5)0.0024 (5)0.0185 (5)0.0043 (4)
N10.0302 (6)0.0302 (6)0.0209 (5)0.0041 (4)0.0072 (4)0.0007 (4)
N20.0285 (6)0.0288 (6)0.0345 (6)0.0009 (4)0.0135 (5)0.0006 (4)
N30.0314 (6)0.0353 (6)0.0244 (5)0.0033 (4)0.0132 (4)0.0039 (4)
N40.0368 (6)0.0375 (7)0.0351 (6)0.0069 (5)0.0116 (5)0.0008 (5)
N50.0383 (6)0.0349 (6)0.0211 (5)0.0030 (5)0.0040 (5)0.0015 (5)
N60.0360 (6)0.0352 (6)0.0225 (5)0.0102 (5)0.0077 (4)0.0001 (4)
C10.0266 (6)0.0273 (6)0.0241 (6)0.0063 (5)0.0100 (5)0.0037 (5)
C20.0271 (6)0.0254 (6)0.0231 (6)0.0026 (5)0.0084 (5)0.0017 (5)
C30.0251 (6)0.0236 (6)0.0208 (5)0.0047 (4)0.0064 (4)0.0017 (4)
C40.0283 (6)0.0249 (6)0.0224 (6)0.0027 (5)0.0072 (5)0.0015 (5)
C50.0274 (6)0.0254 (6)0.0226 (6)0.0062 (5)0.0054 (5)0.0012 (4)
C60.0272 (6)0.0284 (6)0.0264 (6)0.0019 (5)0.0079 (5)0.0035 (5)
C70.0288 (7)0.0318 (7)0.0358 (7)0.0060 (5)0.0164 (5)0.0048 (5)
C80.0262 (6)0.0229 (6)0.0205 (6)0.0030 (4)0.0065 (4)0.0009 (4)
C90.0287 (6)0.0297 (6)0.0252 (6)0.0025 (5)0.0091 (5)0.0011 (5)
C100.0274 (6)0.0291 (6)0.0249 (6)0.0010 (5)0.0041 (5)0.0046 (5)
C110.0294 (6)0.0286 (6)0.0194 (5)0.0078 (5)0.0060 (5)0.0007 (5)
C120.0320 (7)0.0317 (7)0.0256 (6)0.0011 (5)0.0116 (5)0.0016 (5)
C130.0297 (6)0.0282 (6)0.0248 (6)0.0041 (5)0.0074 (5)0.0025 (5)
C140.0281 (6)0.0264 (6)0.0234 (6)0.0009 (5)0.0042 (5)0.0015 (5)
C150.0391 (8)0.0370 (8)0.0514 (9)0.0099 (6)0.0205 (7)0.0088 (6)
C160.0392 (8)0.0573 (9)0.0248 (6)0.0031 (7)0.0139 (6)0.0078 (6)
Geometric parameters (Å, º) top
O1—C61.2267 (16)C3—C41.3883 (17)
O2—C71.2169 (16)C3—C81.4950 (16)
O3—N61.2285 (16)C4—C51.4257 (16)
O4—N61.2245 (15)C4—C141.4343 (17)
N1—C11.3300 (17)C8—C91.3922 (17)
N1—C51.3411 (17)C8—C131.3930 (17)
N2—C61.3823 (16)C9—C101.3881 (17)
N2—C71.3933 (17)C9—H90.95
N2—C151.4686 (18)C10—C111.3766 (18)
N3—C71.3799 (18)C10—H100.95
N3—C11.3830 (16)C11—C121.3822 (18)
N3—C161.4755 (17)C12—C131.3841 (17)
N4—C141.1437 (17)C12—H120.95
N5—C51.3376 (17)C13—H130.95
N5—H5A0.84 (2)C15—H15A0.98
N5—H5B0.96 (2)C15—H15B0.98
N6—C111.4694 (15)C15—H15C0.98
C1—C21.4085 (17)C16—H16A0.98
C2—C31.4001 (17)C16—H16B0.98
C2—C61.4546 (18)C16—H16C0.98
C1—N1—C5118.12 (10)N3—C7—N2117.17 (11)
C6—N2—C7124.61 (11)C9—C8—C13120.28 (11)
C6—N2—C15118.25 (11)C9—C8—C3117.85 (11)
C7—N2—C15116.65 (11)C13—C8—C3121.60 (11)
C7—N3—C1122.48 (11)C10—C9—C8120.02 (12)
C7—N3—C16118.33 (11)C10—C9—H9120.0
C1—N3—C16119.06 (11)C8—C9—H9120.0
C5—N5—H5A117.4 (12)C11—C10—C9118.50 (11)
C5—N5—H5B121.8 (12)C11—C10—H10120.7
H5A—N5—H5B119.3 (17)C9—C10—H10120.7
O4—N6—O3123.27 (11)C10—C11—C12122.63 (11)
O4—N6—C11118.46 (11)C10—C11—N6118.58 (11)
O3—N6—C11118.27 (11)C12—C11—N6118.78 (11)
N1—C1—N3115.79 (11)C11—C12—C13118.66 (11)
N1—C1—C2124.92 (11)C11—C12—H12120.7
N3—C1—C2119.30 (12)C13—C12—H12120.7
C3—C2—C1117.16 (11)C12—C13—C8119.89 (11)
C3—C2—C6122.79 (11)C12—C13—H13120.1
C1—C2—C6119.88 (11)C8—C13—H13120.1
C4—C3—C2118.55 (11)N4—C14—C4177.66 (14)
C4—C3—C8117.74 (10)N2—C15—H15A109.5
C2—C3—C8123.56 (11)N2—C15—H15B109.5
C3—C4—C5119.90 (11)H15A—C15—H15B109.5
C3—C4—C14120.69 (11)N2—C15—H15C109.5
C5—C4—C14119.40 (11)H15A—C15—H15C109.5
N5—C5—N1117.43 (11)H15B—C15—H15C109.5
N5—C5—C4121.35 (12)N3—C16—H16A109.5
N1—C5—C4121.21 (11)N3—C16—H16B109.5
O1—C6—N2120.37 (12)H16A—C16—H16B109.5
O1—C6—C2124.32 (11)N3—C16—H16C109.5
N2—C6—C2115.30 (11)H16A—C16—H16C109.5
O2—C7—N3122.31 (13)H16B—C16—H16C109.5
O2—C7—N2120.52 (13)
C5—N1—C1—N3177.84 (10)C1—C2—C6—O1166.42 (12)
C5—N1—C1—C21.95 (18)C3—C2—C6—N2172.61 (11)
C7—N3—C1—N1179.16 (11)C1—C2—C6—N212.36 (17)
C16—N3—C1—N15.18 (17)C1—N3—C7—O2179.17 (12)
C7—N3—C1—C21.03 (18)C16—N3—C7—O25.15 (19)
C16—N3—C1—C2174.63 (11)C1—N3—C7—N21.01 (18)
N1—C1—C2—C31.43 (18)C16—N3—C7—N2174.68 (11)
N3—C1—C2—C3178.78 (10)C6—N2—C7—O2173.21 (12)
N1—C1—C2—C6173.87 (11)C15—N2—C7—O21.41 (19)
N3—C1—C2—C65.92 (18)C6—N2—C7—N36.62 (19)
C1—C2—C3—C43.48 (17)C15—N2—C7—N3178.41 (11)
C6—C2—C3—C4171.68 (11)C4—C3—C8—C994.22 (14)
C1—C2—C3—C8172.06 (11)C2—C3—C8—C981.35 (15)
C6—C2—C3—C812.79 (18)C4—C3—C8—C1379.81 (15)
C2—C3—C4—C52.33 (17)C2—C3—C8—C13104.62 (15)
C8—C3—C4—C5173.46 (10)C13—C8—C9—C100.53 (19)
C2—C3—C4—C14176.22 (11)C3—C8—C9—C10173.59 (11)
C8—C3—C4—C147.98 (17)C8—C9—C10—C110.76 (19)
C1—N1—C5—N5177.77 (11)C9—C10—C11—C120.19 (19)
C1—N1—C5—C43.20 (17)C9—C10—C11—N6178.55 (11)
C3—C4—C5—N5179.91 (11)O4—N6—C11—C10178.40 (11)
C14—C4—C5—N51.34 (18)O3—N6—C11—C102.14 (17)
C3—C4—C5—N11.10 (18)O4—N6—C11—C122.81 (18)
C14—C4—C5—N1179.67 (11)O3—N6—C11—C12176.64 (12)
C7—N2—C6—O1165.81 (12)C10—C11—C12—C131.3 (2)
C15—N2—C6—O15.87 (19)N6—C11—C12—C13177.39 (11)
C7—N2—C6—C213.03 (18)C11—C12—C13—C81.55 (19)
C15—N2—C6—C2175.30 (11)C9—C8—C13—C120.64 (19)
C3—C2—C6—O18.6 (2)C3—C8—C13—C12174.53 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O1i0.84 (2)2.06 (2)2.8912 (15)171 (2)
N5—H5B···O1ii0.96 (2)2.53 (2)3.4463 (17)160 (2)
C9—H9···O2iii0.952.523.4275 (16)160
C10—H10···N4iv0.952.583.5275 (18)174
C13—H13···O3i0.952.603.4547 (17)151
C15—H15C···O4v0.982.523.464 (2)162
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+3/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1, y+2, z+1; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H12N6O4
Mr352.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)9.6209 (9), 11.7064 (12), 14.5493 (16)
β (°) 106.939 (3)
V3)1567.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.60 × 0.40 × 0.32
Data collection
DiffractometerRigaku Mercury
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.936, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
17123, 3595, 3259
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.122, 1.11
No. of reflections3595
No. of parameters246
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.25

Computer programs: CrystalClear (Rigaku, 2000), CrystalClear, CrystalStructure (Rigaku/MSC, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O1i0.84 (2)2.06 (2)2.8912 (15)171 (2)
N5—H5B···O1ii0.96 (2)2.53 (2)3.4463 (17)160 (2)
C9—H9···O2iii0.952.523.4275 (16)160
C10—H10···N4iv0.952.583.5275 (18)174
C13—H13···O3i0.952.603.4547 (17)151
C15—H15C···O4v0.982.523.464 (2)162
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+3/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1, y+2, z+1; (v) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds