organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro­benzoic acid N,N-di­methyl­form­amide solvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and bDepartment of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: a.r.kennedy@strath.ac.uk

(Received 17 September 2004; accepted 30 September 2004; online 9 October 2004)

In the title compound, C7H5ClO2.C3H7NO, the carboxyl­ic acid group of 4-chloro­benzoic acid is hydrogen bonded to a mol­ecule of N,N-di­methyl­form­amide via an R22(7) O—H⋯O/C—H⋯O motif. This motif takes precedence over the R22(8) O—H⋯O dimer arrangement observed in 4-chloro­benzoic acid itself.

Comment

4-Chloro­benzoic acid (CBA) crystallizes as hydrogen-bonded R22(8) O—H⋯O dimers and dynamic proton transfer within the hydrogen bonds mediates the interconversion of two inequivalent dimeric forms (Horsewill et al., 2003[Horsewill, A. J., McGloin, C. J., Trommsdorff, H. P. & Johnson, M. R. (2003). Chem. Phys. 291, 41-52.]; Wilson et al., 2004[Wilson, C. C., Florence, A. J., Xu, X. & Shankland, N. (2004). Unpublished results.]).[link]

[Scheme 1]

The title compound, (I[link]), was crystallized to determine whether the R22(8) motif, and the proton-transfer process, is preserved in the solvate (Fig. 1[link]). Significant deviations from idealized aromatic geometry in the CBA mol­ecule of (I[link]) include a marked widening of the internal ring angle at C4 [122.26 (12)°] and a concomitant narrowing of the angles ortho to this at C3 [118.25 (12)°] and C5 [118.81 (13)°]. Utilizing the angular substituent parameters for Cl and COOH (Domenicano, 1992[Domenicano, A. (1992). Accurate Molecular Structures, edited by A. Domenicano and I. Hargittai, pp. 437-468. Oxford University Press.]), the corresponding predicted internal ring angles of 122.1 (C4) and 118.7° (C3 and C5) are in good agreement with the observed values. Thus, it may be concluded that the distortions from ideal sp2 ring geometry are in line with expectations based on Domenicano's assessment of structural substituent effects in benzene derivatives. The R22(8) motif in CBA [Fig. 2[link], top, determined from single-crystal neutron diffraction data at 100 K (Wilson et al., 2004[Wilson, C. C., Florence, A. J., Xu, X. & Shankland, N. (2004). Unpublished results.])] is not preserved in (I[link]). Instead, one CBA mol­ecule is replaced by one mol­ecule of N,N-di­methyl­form­amide (DMF), forming an R22(7) O—H⋯O/C—H⋯O motif (Fig. 2[link], bottom), eliminating the possibility of a concerted two-proton transfer process. This interaction with DMF is not unexpected, as the R22(7) motif has been observed to recur with a reasonable frequency in the DMF solvates of carboxyl­ic acids (Dale & Elsegood, 2004[Dale, S. H. & Elsegood, M. R. J. (2004). Acta Cryst. C60, o444-o448.]).

[Figure 1]
Figure 1
The molecular structure of (I[link]), shown with 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
Top: the R22(8) motif in CBA, with O⋯O = 2.588 (3) Å, O—H = 0.997 (6) Å and H⋯O = 1.595 (6) Å. Bottom: the R22(7) motif in (I[link]), with O⋯O = 2.5752 (14) Å, O—H = 0.92 (2) Å, (O)H⋯O = 1.66 (2) Å and (C—)H⋯O = 2.716 (14) Å.

Experimental

A single-crystal sample of the title compound was recrystallized from DMF solution by slow evaporation at room temperature.

Crystal data
  • C7H5ClO2·C3H7NO

  • Mr = 229.66

  • Monoclinic, P21/c

  • a = 6.1269 (2) Å

  • b = 14.6159 (5) Å

  • c = 12.6541 (4) Å

  • β = 103.228 (2)°

  • V = 1103.11 (6) Å3

  • Z = 4

  • Dx = 1.383 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2512 reflections

  • θ = 1.0–27.5°

  • μ = 0.33 mm−1

  • T = 123 (2) K

  • Cut fragment, colourless

  • 0.50 × 0.45 × 0.40 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: none

  • 10331 measured reflections

  • 2488 independent reflections

  • 2049 reflections with I > 2σ(I)

  • Rint = 0.033

  • θmax = 27.5°

  • h = −7 → 7

  • k = −18 → 18

  • l = −16 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.086

  • S = 1.02

  • 2488 reflections

  • 146 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0339P)2 + 0.445P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected geometric parameters (Å, °)

O1—C7 1.3257 (16)
O2—C7 1.2149 (16)
O3—C8 1.2400 (16)
C6—C1—C2 119.67 (12)
C3—C2—C1 120.76 (12)
C2—C3—C4 118.25 (12)
C5—C4—C3 122.26 (12)
C4—C5—C6 118.81 (13)
C5—C6—C1 120.25 (12)
O2—C7—O1 123.90 (12)
O2—C7—C1 123.13 (12)
O1—C7—C1 112.97 (11)

The H atoms involved in hydrogen bonding were located in a difference map and refined isotropically, but all other H atoms were constrained to idealized geometry with a riding model: for CH3, Uiso(H) = 1.5Ueq(C) and C—H = 0.98 Å; for CH, Uiso(H) = 1.2Ueq(C) and C—H = 0.95 Å.

Data collection: DENZO (Hooft, 1988[Hooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.]) and COLLECT (Otwin­owski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: DENZO (Hooft, 1988) and COLLECT (Otwinowski & Minor, 1997); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

4-Chlorobenzoic acid N,N-dimethylformamide solvate top
Crystal data top
C7H5ClO2·C3H7NOF(000) = 480
Mr = 229.66Dx = 1.383 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.1269 (2) ÅCell parameters from 2512 reflections
b = 14.6159 (5) Åθ = 1.0–27.5°
c = 12.6541 (4) ŵ = 0.33 mm1
β = 103.228 (2)°T = 123 K
V = 1103.11 (6) Å3Cut fragment, colourless
Z = 40.50 × 0.45 × 0.40 mm
Data collection top
Nonius KappaCCD
diffractometer
2049 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
φ and ω scansh = 77
10331 measured reflectionsk = 1818
2488 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0339P)2 + 0.445P]
where P = (Fo2 + 2Fc2)/3
2488 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.31 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.48550 (7)0.33679 (3)0.46220 (3)0.04267 (14)
O10.75372 (17)0.42666 (7)0.00788 (8)0.0317 (2)
O21.03650 (16)0.33076 (7)0.06058 (8)0.0292 (2)
O30.08773 (16)0.06015 (7)0.32101 (8)0.0294 (2)
N10.17573 (19)0.10376 (8)0.23148 (9)0.0240 (2)
C10.7701 (2)0.36572 (9)0.16601 (10)0.0223 (3)
C20.8882 (2)0.31796 (9)0.25654 (11)0.0248 (3)
H21.02820.29070.25500.030*
C30.8037 (2)0.30975 (10)0.34867 (11)0.0269 (3)
H30.88400.27730.41040.032*
C40.5986 (2)0.35026 (10)0.34838 (11)0.0270 (3)
C50.4786 (2)0.39844 (10)0.26020 (11)0.0264 (3)
H50.33920.42590.26230.032*
C60.5655 (2)0.40599 (9)0.16836 (11)0.0248 (3)
H60.48490.43880.10690.030*
C70.8688 (2)0.37198 (9)0.06848 (11)0.0239 (3)
C80.0964 (2)0.09489 (9)0.31984 (11)0.0246 (3)
C90.0485 (3)0.07220 (12)0.12662 (11)0.0370 (4)
H9A0.09240.04470.13500.056*
H9B0.13620.02650.09760.056*
H9C0.01590.12410.07640.056*
C100.3929 (2)0.14543 (11)0.23470 (13)0.0340 (3)
H10A0.46430.16200.30970.051*
H10B0.37230.20050.18930.051*
H10C0.48820.10180.20720.051*
H80.194 (2)0.1190 (10)0.3852 (12)0.025 (4)*
H10.823 (4)0.4279 (15)0.0653 (18)0.066 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0402 (2)0.0637 (3)0.02799 (19)0.00013 (19)0.01599 (16)0.00366 (18)
O10.0328 (5)0.0397 (6)0.0245 (5)0.0101 (5)0.0107 (4)0.0074 (4)
O20.0267 (5)0.0339 (6)0.0279 (5)0.0057 (4)0.0082 (4)0.0019 (4)
O30.0279 (5)0.0350 (6)0.0273 (5)0.0034 (4)0.0102 (4)0.0029 (4)
N10.0243 (6)0.0241 (6)0.0235 (5)0.0002 (5)0.0053 (4)0.0004 (5)
C10.0235 (6)0.0198 (6)0.0238 (6)0.0014 (5)0.0053 (5)0.0014 (5)
C20.0238 (7)0.0232 (7)0.0266 (7)0.0017 (5)0.0042 (5)0.0005 (5)
C30.0292 (7)0.0266 (7)0.0236 (6)0.0009 (6)0.0035 (5)0.0026 (5)
C40.0287 (7)0.0303 (8)0.0231 (6)0.0064 (6)0.0085 (5)0.0036 (6)
C50.0239 (7)0.0264 (7)0.0299 (7)0.0006 (6)0.0082 (5)0.0017 (6)
C60.0248 (7)0.0230 (7)0.0257 (6)0.0004 (5)0.0039 (5)0.0019 (5)
C70.0238 (6)0.0239 (7)0.0233 (6)0.0011 (5)0.0036 (5)0.0018 (5)
C80.0275 (7)0.0228 (7)0.0228 (6)0.0003 (5)0.0043 (5)0.0011 (5)
C90.0358 (8)0.0513 (10)0.0234 (7)0.0045 (7)0.0056 (6)0.0031 (7)
C100.0303 (7)0.0355 (9)0.0380 (8)0.0060 (6)0.0114 (6)0.0000 (7)
Geometric parameters (Å, º) top
Cl1—C41.7463 (14)C3—H30.950
O1—C71.3257 (16)C4—C31.389 (2)
O1—H10.92 (2)C4—C51.380 (2)
O2—C71.2149 (16)C5—H50.950
O3—C81.2400 (16)C6—C51.3889 (18)
N1—C81.3238 (17)C6—H60.950
N1—C91.4518 (17)C8—H80.969 (15)
N1—C101.4552 (18)C9—H9A0.980
C1—C61.3915 (18)C9—H9B0.980
C1—C71.4963 (18)C9—H9C0.980
C2—C11.3942 (18)C10—H10A0.980
C2—H20.950C10—H10B0.980
C3—C21.3848 (19)C10—H10C0.980
C7—O1—H1108.8 (13)C5—C6—H6119.9
C8—N1—C9121.11 (12)C1—C6—H6119.9
C8—N1—C10121.84 (12)O2—C7—O1123.90 (12)
C9—N1—C10117.05 (11)O2—C7—C1123.13 (12)
C6—C1—C2119.67 (12)O1—C7—C1112.97 (11)
C6—C1—C7121.86 (12)O3—C8—N1124.14 (12)
C2—C1—C7118.47 (12)O3—C8—H8121.6 (9)
C3—C2—C1120.76 (12)N1—C8—H8114.3 (9)
C3—C2—H2119.6N1—C9—H9A109.5
C1—C2—H2119.6N1—C9—H9B109.5
C2—C3—C4118.25 (12)H9A—C9—H9B109.5
C2—C3—H3120.9N1—C9—H9C109.5
C4—C3—H3120.9H9A—C9—H9C109.5
C5—C4—C3122.26 (12)H9B—C9—H9C109.5
C5—C4—Cl1119.07 (11)N1—C10—H10A109.5
C3—C4—Cl1118.64 (11)N1—C10—H10B109.5
C4—C5—C6118.81 (13)H10A—C10—H10B109.5
C4—C5—H5120.6N1—C10—H10C109.5
C6—C5—H5120.6H10A—C10—H10C109.5
C5—C6—C1120.25 (12)H10B—C10—H10C109.5
C7—C1—C6—C5179.74 (13)C4—C3—C2—C10.0 (2)
C2—C1—C6—C50.2 (2)C5—C4—C3—C20.4 (2)
C2—C1—C7—O1173.46 (12)Cl1—C4—C3—C2177.67 (11)
C2—C1—C7—O26.8 (2)Cl1—C4—C5—C6177.60 (11)
C6—C1—C7—O16.56 (18)C3—C4—C5—C60.5 (2)
C6—C1—C7—O2173.18 (13)C1—C6—C5—C40.2 (2)
C3—C2—C1—C60.3 (2)C9—N1—C8—O30.1 (2)
C3—C2—C1—C7179.68 (12)C10—N1—C8—O3179.77 (13)
 

References

First citationDale, S. H. & Elsegood, M. R. J. (2004). Acta Cryst. C60, o444-o448.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDomenicano, A. (1992). Accurate Molecular Structures, edited by A. Domenicano and I. Hargittai, pp. 437–468. Oxford University Press.  Google Scholar
First citationHooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHorsewill, A. J., McGloin, C. J., Trommsdorff, H. P. & Johnson, M. R. (2003). Chem. Phys. 291, 41–52.  Web of Science CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilson, C. C., Florence, A. J., Xu, X. & Shankland, N. (2004). Unpublished results.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds