Download citation
Download citation
link to html
Molecules of the tetra­hydroxy­flavone luteolin, C15H10O6, are essentially planar and contain an intramolecular hydrogen bond. The crystal structure is stabilized by O—H...O, C—H...O and C—H...π interactions, and contains disordered water mol­ecules, probably corresponding to a hemihydrate.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803013229/cf6263sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803013229/cf6263Isup2.hkl
Contains datablock I

CCDC reference: 217463

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.093
  • wR factor = 0.190
  • Data-to-parameter ratio = 7.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.58 From the CIF: _reflns_number_total 1471 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 1666 Completeness (_total/calc) 88.30% Alert B: < 90% complete (theta max?) PLAT_420 Alert B D-H Without Acceptor O4 - H4 .. ?
Yellow Alert Alert Level C:
PLAT_601 Alert C Structure Contains Solvent Accessible VOIDS of . 34.00 A   3 General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.58 From the CIF: _reflns_number_total 1471 Count of symmetry unique reflns 1666 Completeness (_total/calc) 88.30% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
0 Alert Level A = Potentially serious problem
2 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

There is an extensive body of literature on the biological activity of luteolin (5,7,3',4'-tetrahydroxyflavone), (I), including a dedicated web site (luteolin.com). Many herbs containing luteolin have been used as traditional medicines to treat a wide variety of symptoms, and anti-inflammatory and anti-oxidant activity are particularly important features of this flavonoid. A recent example of its structure elucidation by spectroscopy has been published (Owen et al., 2003).

The atomic arrangement in (I) is shown in Fig. 1. The molecule is essentially planar, with a dihedral angle between the endocyclic atoms of the pyrone ring system and the phenyl ring of only 2.1 (3)°. The largest torsion angle [O6—C13—C14—O5 = 4.7 (9)°] involves hydroxy O atoms associated with intermolecular hydrogen bonding.

Within the crystal structure, hydrogen bonding is extensive (Table 2). An intramolecular hydrogen bond is present between the carbonyl and hydroxy groups at C4 and C5, respectively. The H12···O1 separation is also short at 2.31 Å, but the C12—H12···O1 angle is only 101°. The hydroxy group at C7 is believed to be linked with the solvent through hydrogen bonding, but the quality of the data cannot confirm this association. Apart from the classical hydrogen bonding, a C—H···O interaction and a C—H···π (Table 3) contact are also present. Crystal structures of related hydroxyflavones include cirsimaritin (Chou et al., 2002), pachypodol (Smith et al., 2001) and 5-hydroxy-3,7,4'-trimethoxyflavone (Gajhede et al., 1989).

Experimental top

The seeds of Daucus carota L. (family Apiaceae), commonly known as 'Wild Carrot', were purchased from B&T World Seeds, France. A voucher specimen (PH700 003) has been deposited in the herbarium of the Plant and Soil Science Department, University of Aberdeen, Scotland (ABD). Ground seeds were Soxhlet-extracted, successively, with n-hexane, dichloromethane and methanol (1.1 l each). The methanol extract was subjected to Sep-Pak (C18, 10 g cartridge) fractionation using 30, 40, 60, 80 and 100% aqueous MeOH (200 ml each). The preparative HPLC analysis (A Luna C18 preparative column 10 µ, 250 mm × 21.2 mm; mobile phase: 30–80% MeOH in water gradient over 50 min, flow rate = 20 ml min−1) of the Sep-Pak 60% MeOH fraction yielded luteolin (19 mg, retention time = 26 min), the structure of which was preliminarily determined by UV, MS, 1H and 13C NMR data analyses.

Refinement top

Data were collected on a weakly diffracting thin plate over 46 h. H atoms were placed in calculated positions (O—H = 0.84 Å and C—H= 0.95 Å) and allowed to ride on their parent atoms with freely refined Uiso(H). The structure contains disordered solvent, which was treated with the SQUEEZE procedure in PLATON (Spek, 2002). There are two solvent cavities per unit cell, at positions (0, 0.261, 0) and (1/2, 0.761, 0), each with a volume of 35 Å3 and each containing approximately 13 electrons. At least two diffuse peaks could be seen in each cavity in a difference map, but the small volume indicates the presence of a single water molecule (10 electrons) disordered in each cavity.

In the absence of elements heavier than oxygen, Friedel pairs were merged prior to refinement. The absolute polarity of the crystal was assigned arbitrarily (for a planar molecule, absolute configuration is meaningless).

The high value of R relates to the difficulty in obtaining suitable data from a small, thin plate of diffracting material containing diffuse solvent.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
(I) top
Crystal data top
C15H10O6F(000) = 592
Mr = 286.23Dx = 1.463 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 8254 reflections
a = 35.327 (5) Åθ = 2.9–27.5°
b = 5.618 (1) ŵ = 0.12 mm1
c = 6.682 (1) ÅT = 120 K
β = 101.554 (5)°Plate, light brown
V = 1299.3 (4) Å30.4 × 0.1 × 0.01 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
1262 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.087
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
θmax = 27.6°, θmin = 3.1°
Tmin = 0.911, Tmax = 1.000h = 4545
8254 measured reflectionsk = 77
1471 independent reflectionsl = 88
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullOnly H-atom displacement parameters refined
R[F2 > 2σ(F2)] = 0.093 w = 1/[σ2(Fo2) + (0.0452P)2 + 6.6344P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.190(Δ/σ)max < 0.001
S = 1.18Δρmax = 0.35 e Å3
1471 reflectionsΔρmin = 0.34 e Å3
204 parameters
Crystal data top
C15H10O6V = 1299.3 (4) Å3
Mr = 286.23Z = 4
Monoclinic, C2Mo Kα radiation
a = 35.327 (5) ŵ = 0.12 mm1
b = 5.618 (1) ÅT = 120 K
c = 6.682 (1) Å0.4 × 0.1 × 0.01 mm
β = 101.554 (5)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1471 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
1262 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 1.000Rint = 0.087
8254 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0931 restraint
wR(F2) = 0.190Only H-atom displacement parameters refined
S = 1.18Δρmax = 0.35 e Å3
1471 reflectionsΔρmin = 0.34 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12646 (13)0.1650 (9)0.1071 (7)0.0257 (11)
O20.13361 (12)0.6547 (9)0.3352 (7)0.0258 (11)
O30.07851 (13)0.4290 (10)0.5823 (8)0.0325 (13)
H30.10090.48480.57070.03 (2)*
O40.02586 (14)0.2521 (10)0.3174 (9)0.0360 (14)
H40.0260.32080.20550.10 (5)*
O50.24217 (13)0.2814 (9)0.9362 (7)0.0271 (12)
H50.25740.39650.96710.03 (2)*
O60.18886 (13)0.0343 (9)0.8124 (8)0.0289 (12)
H60.16860.11160.76670.02 (2)*
C20.15262 (16)0.3495 (12)0.1438 (11)0.0206 (16)
C30.1546 (2)0.5170 (13)0.0009 (12)0.0297 (17)
H3A0.17240.64470.03070.03 (2)*
C40.13032 (17)0.5045 (12)0.1998 (11)0.0201 (14)
C50.07756 (18)0.2764 (13)0.4265 (11)0.0254 (16)
C60.0527 (2)0.0894 (14)0.4540 (13)0.0320 (18)
H6A0.03590.06580.58250.11 (4)*
C70.05183 (17)0.0730 (13)0.2886 (13)0.0311 (19)
C80.07567 (19)0.0374 (14)0.1021 (13)0.0319 (18)
H80.07440.13940.00980.05 (3)*
C90.10104 (19)0.1464 (14)0.0807 (11)0.0253 (15)
C100.1032 (2)0.3133 (14)0.2351 (12)0.0272 (17)
C110.17618 (18)0.3345 (13)0.3490 (11)0.0230 (15)
C120.17082 (19)0.1511 (14)0.4789 (11)0.0267 (16)
H120.15170.03330.43460.03 (2)*
C130.1936 (2)0.1398 (12)0.6749 (11)0.0252 (16)
C140.22093 (17)0.3136 (13)0.7433 (11)0.0234 (16)
C150.22675 (18)0.4970 (13)0.6154 (11)0.0241 (16)
H150.2460.61360.66130.03 (2)*
C160.20440 (18)0.5109 (13)0.4191 (11)0.0260 (16)
H160.20810.63880.33190.04 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.030 (2)0.028 (3)0.018 (3)0.001 (2)0.0024 (19)0.002 (2)
O20.031 (2)0.025 (3)0.022 (3)0.007 (2)0.005 (2)0.002 (2)
O30.032 (3)0.039 (3)0.025 (3)0.004 (2)0.002 (2)0.002 (3)
O40.036 (3)0.033 (3)0.032 (3)0.004 (2)0.009 (2)0.006 (3)
O50.028 (2)0.024 (3)0.025 (3)0.007 (2)0.0040 (19)0.003 (2)
O60.035 (3)0.027 (3)0.022 (3)0.003 (2)0.001 (2)0.006 (2)
C20.013 (3)0.023 (3)0.024 (4)0.001 (2)0.000 (2)0.003 (3)
C30.046 (4)0.015 (3)0.028 (5)0.005 (3)0.009 (3)0.008 (3)
C40.019 (3)0.024 (3)0.018 (4)0.002 (3)0.006 (2)0.001 (3)
C50.028 (3)0.018 (3)0.031 (5)0.003 (3)0.007 (3)0.009 (3)
C60.036 (4)0.034 (4)0.024 (5)0.001 (3)0.002 (3)0.000 (3)
C70.017 (3)0.024 (4)0.049 (6)0.002 (3)0.002 (3)0.005 (4)
C80.034 (3)0.032 (4)0.029 (5)0.002 (3)0.003 (3)0.011 (3)
C90.030 (3)0.027 (4)0.019 (4)0.003 (3)0.006 (3)0.004 (3)
C100.030 (3)0.033 (4)0.017 (4)0.002 (3)0.003 (3)0.002 (3)
C110.025 (3)0.025 (4)0.021 (4)0.001 (3)0.010 (3)0.003 (3)
C120.032 (3)0.030 (4)0.016 (4)0.002 (3)0.000 (3)0.005 (3)
C130.044 (4)0.018 (3)0.014 (4)0.005 (3)0.005 (3)0.001 (3)
C140.021 (3)0.029 (4)0.018 (4)0.007 (3)0.002 (3)0.005 (3)
C150.025 (3)0.023 (3)0.024 (4)0.004 (3)0.007 (3)0.003 (3)
C160.029 (3)0.022 (3)0.028 (5)0.003 (3)0.007 (3)0.009 (3)
Geometric parameters (Å, º) top
O1—C21.377 (8)C5—C101.426 (9)
O1—C91.393 (8)C6—C71.438 (11)
O2—C41.260 (8)C6—H6A0.95
O3—C51.354 (8)C7—C81.372 (10)
O3—H30.84C8—C91.356 (10)
O4—C71.349 (8)C8—H80.95
O4—H40.84C9—C101.408 (10)
O5—C141.367 (7)C11—C121.384 (10)
O5—H50.84C11—C161.417 (10)
O6—C131.375 (8)C12—C131.394 (9)
O6—H60.84C12—H120.95
C2—C31.361 (10)C13—C141.385 (9)
C2—C111.457 (9)C14—C151.380 (10)
C3—C41.432 (9)C15—C161.391 (9)
C3—H3A0.95C15—H150.95
C4—C101.428 (10)C16—H160.95
C5—C61.358 (10)
C2—O1—C9120.3 (5)C7—C8—H8120.7
C5—O3—H3109.5C8—C9—O1116.4 (7)
C7—O4—H4109.5C8—C9—C10124.1 (7)
C14—O5—H5109.5O1—C9—C10119.4 (6)
C13—O6—H6109.5C9—C10—C5116.3 (6)
C3—C2—O1121.5 (6)C9—C10—C4120.8 (6)
C3—C2—C11127.4 (6)C5—C10—C4122.8 (7)
O1—C2—C11111.1 (6)C12—C11—C16119.3 (6)
C2—C3—C4121.2 (6)C12—C11—C2120.6 (6)
C2—C3—H3A119.4C16—C11—C2120.1 (6)
C4—C3—H3A119.4C11—C12—C13119.8 (7)
O2—C4—C10122.7 (6)C11—C12—H12120.1
O2—C4—C3120.6 (6)C13—C12—H12120.1
C10—C4—C3116.6 (6)O6—C13—C14116.8 (6)
O3—C5—C6120.1 (6)O6—C13—C12122.4 (7)
O3—C5—C10119.2 (6)C14—C13—C12120.7 (7)
C6—C5—C10120.7 (7)O5—C14—C15124.1 (6)
C5—C6—C7120.0 (7)O5—C14—C13115.6 (6)
C5—C6—H6A120C15—C14—C13120.1 (6)
C7—C6—H6A120C14—C15—C16120.0 (6)
O4—C7—C8121.0 (7)C14—C15—H15120
O4—C7—C6118.9 (6)C16—C15—H15120
C8—C7—C6120.1 (7)C15—C16—C11120.1 (7)
C9—C8—C7118.7 (7)C15—C16—H16120
C9—C8—H8120.7C11—C16—H16120
C9—O1—C2—C30.3 (9)C6—C5—C10—C4178.8 (7)
C9—O1—C2—C11179.9 (6)O2—C4—C10—C9178.6 (7)
O1—C2—C3—C41.9 (10)C3—C4—C10—C90.5 (10)
C11—C2—C3—C4177.8 (6)O2—C4—C10—C50.1 (11)
C2—C3—C4—O2176.9 (6)C3—C4—C10—C5179.0 (7)
C2—C3—C4—C102.2 (10)C3—C2—C11—C12179.6 (7)
O3—C5—C6—C7179.8 (6)O1—C2—C11—C120.2 (8)
C10—C5—C6—C70.5 (11)C3—C2—C11—C161.6 (10)
C5—C6—C7—O4177.5 (7)O1—C2—C11—C16178.6 (6)
C5—C6—C7—C80.9 (11)C16—C11—C12—C131.1 (10)
O4—C7—C8—C9179.4 (7)C2—C11—C12—C13179.9 (7)
C6—C7—C8—C93.0 (11)C11—C12—C13—O6178.2 (6)
C7—C8—C9—O1175.6 (7)C11—C12—C13—C141.7 (10)
C7—C8—C9—C103.8 (11)O6—C13—C14—O54.7 (9)
C2—O1—C9—C8178.5 (6)C12—C13—C14—O5178.6 (6)
C2—O1—C9—C102.1 (9)O6—C13—C14—C15178.7 (6)
C8—C9—C10—C52.4 (10)C12—C13—C14—C152.0 (10)
O1—C9—C10—C5177.0 (7)O5—C14—C15—C16178.0 (7)
C8—C9—C10—C4179.0 (7)C13—C14—C15—C161.7 (10)
O1—C9—C10—C41.6 (10)C14—C15—C16—C111.2 (10)
O3—C5—C10—C9179.2 (6)C12—C11—C16—C150.9 (10)
C6—C5—C10—C90.2 (10)C2—C11—C16—C15179.7 (6)
O3—C5—C10—C40.6 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.842.002.614 (7)130
O5—H5···O5i0.842.262.955 (7)141
O5—H5···O6i0.842.192.862 (7)137
O6—H6···O2ii0.841.842.658 (7)165
C3—H3A···O6iii0.952.463.159 (9)130
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x, y1, z+1; (iii) x, y+1, z1.

Experimental details

Crystal data
Chemical formulaC15H10O6
Mr286.23
Crystal system, space groupMonoclinic, C2
Temperature (K)120
a, b, c (Å)35.327 (5), 5.618 (1), 6.682 (1)
β (°) 101.554 (5)
V3)1299.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.4 × 0.1 × 0.01
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.911, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8254, 1471, 1262
Rint0.087
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.093, 0.190, 1.18
No. of reflections1471
No. of parameters204
No. of restraints1
H-atom treatmentOnly H-atom displacement parameters refined
Δρmax, Δρmin (e Å3)0.35, 0.34

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2002), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
O2—C41.260 (8)O5—C141.367 (7)
O3—C51.354 (8)O6—C131.375 (8)
O4—C71.349 (8)C2—C111.457 (9)
C3—C2—C11127.4 (6)O1—C2—C11111.1 (6)
O6—C13—C14—O54.7 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.842.002.614 (7)130
O5—H5···O5i0.842.262.955 (7)141
O5—H5···O6i0.842.192.862 (7)137
O6—H6···O2ii0.841.842.658 (7)165
C3—H3A···O6iii0.952.463.159 (9)130
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x, y1, z+1; (iii) x, y+1, z1.
C—H···π interactions (Å, °) top
C—HCgIsymmetry codeH···CgIC—H···CgIC···CgI
C15—H1510.5 − x,0.5 + y,1 − z2.871303.553 (7)
Cg1 is the centre of gravity of the aromatic ring C11–C16.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds