Download citation
Download citation
link to html
In the title compound, C20H24N2O5·H2O, the mol­ecules are linked to each other by hydrogen bonds, and form a supramolecular chain structure. The organic and water mol­ecules lie on crystallographic twofold rotation axes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803004896/cf6238sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803004896/cf6238Isup2.hkl
Contains datablock I

CCDC reference: 209925

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.004 Å
  • H-atom completeness 93%
  • R factor = 0.049
  • wR factor = 0.124
  • Data-to-parameter ratio = 13.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C20 H26 N2 O6 Atom count from the _atom_site data: C20 H24 N2 O6 CELLZ_01 From the CIF: _cell_formula_units_Z 4 From the CIF: _chemical_formula_sum C20 H26 N2 O6 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 80.00 80.00 0.00 H 104.00 96.00 8.00 N 8.00 8.00 0.00 O 24.00 24.00 0.00 Difference between formula and atom_site contents detected. WARNING: H atoms missing from atom site list. Is this intentional?

Comment top

Hydrogen-bonding interactions are regarded as among the most important driving forces in crystal engineering (Ranganaham et al., 1999). Whitesides et al. (1995) have designed a family of self-assembled aggregates by hydrogen bonding between cyanuric acid and melamine. Recently, this method was also introduced for the construction of supramolecular nanostructures (Kosonen et al., 2000). In this work, hydrogen bonds between water and the O atoms of C20H24N2O5 were used to form a novel supramolecular cavity.

In the title compound, (I), the water molecule (O4) forms two hydrogen bonds with O2 and a symmetry-equivalent O2, the O4···O2 distance being 2.813 (3) Å, and the angle at O4 being 103.7 (2) Å. N—H forms a hydrogen bond with an O atom of another molecule (Table 2).

The molecules are linked by O···O and N···O hydrogen bonds and construct a one-dimensional supramolecular chain structure (Fig. 2). Adjacent molecules adopt opposite orientations due to the bulk of the benzene rings. A cavity formed by hydrogen bonds is observed (Fig. 3).

Experimental top

The title compound was prepared by the direct reaction of chlorocarbonylmethoxyacetyl chloride with 4-ethoxyphenylamine in pyridine. The resulting mixture was separated by flash chromatography (ethyl acetate/benzene, 1:4). Suitable crystals were obtained by evaporation of an ethanol solution. Spectroscopic analysis, IR (KBr, ν, cm−1): 1666, 1117, 1235; 1H NMR (CDCl3, δ): 4.24 (s, 2H), 8.23 (s, 1H), 6.81–7.53 (d, 1H), 3.87–4.13 (d, 2H), 1.25–1.42 (d, 3H); analysis, calculated for C20H26N2O6: C 61.53, H 6.71, N 7.17%; found: C 61.94, H 6.44, N 7.06%.

Refinement top

All H atoms were positioned geometrically and refined with riding model constraints, except for those on the water molecule, which were not included.

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. Dashed lines indicate the hydrogen-bonding interactions.
[Figure 2] Fig. 2. The chain-like supramolecular structure of (I). H atoms have been omitted for clarity. Dashed lines indicate the hydrogen-bonding interactions.
[Figure 3] Fig. 3. Supramolecular cavity formed by hydrogen bonds. H atoms are omitted for clarity. Dashed lines indicate the hydrogen bonding interactions.
N-(4-Ethoxyphenyl)-2-[(4-ethoxyphenylcarbamoyl)methoxy]acetamide monohydrate top
Crystal data top
C20H24N2O5·H2OF(000) = 832
Mr = 390.43Dx = 1.285 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 30.575 (5) ÅCell parameters from 25 reflections
b = 7.929 (1) Åθ = 2.7–12.1°
c = 8.356 (2) ŵ = 0.10 mm1
β = 95.09 (2)°T = 294 K
V = 2017.7 (6) Å3Rhomboidal plate, colourless
Z = 40.70 × 0.52 × 0.06 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.034
Radiation source: normal-focus sealed tubeθmax = 25.0°, θmin = 2.7°
Graphite monochromatorh = 036
ω scansk = 09
2017 measured reflectionsl = 99
1771 independent reflections3 standard reflections every 97 reflections
880 reflections with I > 2σ(I) intensity decay: 4.4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0559P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.84(Δ/σ)max < 0.001
1771 reflectionsΔρmax = 0.15 e Å3
130 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0027 (6)
Crystal data top
C20H24N2O5·H2OV = 2017.7 (6) Å3
Mr = 390.43Z = 4
Monoclinic, C2/cMo Kα radiation
a = 30.575 (5) ŵ = 0.10 mm1
b = 7.929 (1) ÅT = 294 K
c = 8.356 (2) Å0.70 × 0.52 × 0.06 mm
β = 95.09 (2)°
Data collection top
Siemens P4
diffractometer
Rint = 0.034
2017 measured reflections3 standard reflections every 97 reflections
1771 independent reflections intensity decay: 4.4%
880 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 0.84Δρmax = 0.15 e Å3
1771 reflectionsΔρmin = 0.20 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00000.1183 (3)1.25000.0469 (7)
O20.06068 (6)0.1831 (2)0.9153 (2)0.0536 (6)
O30.18409 (7)0.4539 (3)0.8299 (3)0.0700 (7)
N0.06454 (7)0.0315 (3)1.0971 (3)0.0458 (6)
H0N0.05430.06631.18380.055*
C10.02234 (9)0.2202 (3)1.1447 (3)0.0451 (7)
H1A0.04050.30101.20740.054*
H1B0.00100.28291.07560.054*
C20.05087 (8)0.1196 (3)1.0418 (3)0.0423 (7)
C30.09447 (9)0.1403 (3)1.0260 (3)0.0438 (7)
C40.09012 (9)0.3115 (3)1.0404 (3)0.0497 (8)
H40.06730.35461.09470.060*
C50.11898 (9)0.4216 (3)0.9759 (3)0.0531 (8)
H50.11550.53740.98690.064*
C60.15272 (9)0.3593 (4)0.8956 (3)0.0531 (8)
C70.15682 (10)0.1875 (4)0.8780 (4)0.0672 (10)
H70.17940.14480.82210.081*
C80.12789 (9)0.0774 (4)0.9423 (4)0.0620 (9)
H80.13090.03830.92920.074*
C90.18480 (10)0.6306 (4)0.8604 (4)0.0674 (10)
H9A0.15820.68310.81150.081*
H9B0.18680.65210.97510.081*
C100.22438 (11)0.7002 (4)0.7884 (4)0.0916 (12)
H10A0.22150.68160.67450.110*
H10B0.22660.81900.80970.110*
H10C0.25030.64440.83520.110*
O40.00000.4023 (4)0.75000.0973 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0530 (16)0.0415 (15)0.0502 (16)0.0000.0261 (14)0.000
O20.0674 (13)0.0465 (12)0.0507 (12)0.0014 (10)0.0269 (10)0.0053 (10)
O30.0613 (14)0.0569 (14)0.0966 (17)0.0119 (11)0.0335 (12)0.0005 (12)
N0.0504 (15)0.0452 (14)0.0445 (14)0.0027 (12)0.0184 (12)0.0052 (12)
C10.0542 (17)0.0384 (16)0.0450 (15)0.0022 (14)0.0175 (14)0.0004 (14)
C20.0394 (15)0.0439 (17)0.0442 (16)0.0052 (14)0.0081 (13)0.0038 (15)
C30.0433 (16)0.0445 (17)0.0450 (16)0.0016 (14)0.0123 (13)0.0023 (14)
C40.0441 (17)0.0450 (17)0.0623 (19)0.0005 (15)0.0175 (15)0.0075 (16)
C50.0516 (18)0.0377 (17)0.072 (2)0.0021 (15)0.0134 (16)0.0011 (15)
C60.0466 (17)0.0506 (19)0.0641 (19)0.0053 (16)0.0164 (15)0.0034 (16)
C70.054 (2)0.061 (2)0.092 (2)0.0011 (18)0.0368 (18)0.009 (2)
C80.0539 (19)0.0441 (18)0.092 (2)0.0013 (15)0.0295 (18)0.0070 (17)
C90.059 (2)0.059 (2)0.085 (2)0.0143 (17)0.0084 (18)0.0059 (19)
C100.086 (3)0.089 (3)0.102 (3)0.040 (2)0.024 (2)0.005 (2)
O40.111 (3)0.077 (2)0.108 (3)0.0000.033 (2)0.000
Geometric parameters (Å, º) top
O1—C1i1.414 (3)C1—C21.506 (3)
O1—C11.414 (3)C3—C41.371 (3)
O2—C21.232 (3)C3—C81.381 (3)
O2—O42.813 (3)C4—C51.384 (3)
O3—C61.370 (3)C5—C61.371 (3)
O3—C91.424 (3)C6—C71.377 (4)
N—C21.338 (3)C7—C81.384 (4)
N—C31.425 (3)C9—C101.503 (4)
C1i—O1—C1110.3 (3)C8—C3—N121.6 (2)
C2—O2—O4118.28 (16)C3—C4—C5121.3 (3)
C6—O3—C9117.8 (2)C6—C5—C4119.8 (3)
C2—N—C3126.2 (2)O3—C6—C5125.6 (3)
O1—C1—C2112.9 (2)O3—C6—C7115.2 (3)
O2—C2—N124.8 (2)C5—C6—C7119.2 (3)
O2—C2—C1118.1 (2)C6—C7—C8121.0 (3)
N—C2—C1117.1 (2)C3—C8—C7119.7 (3)
C4—C3—C8118.9 (3)O3—C9—C10106.8 (3)
C4—C3—N119.5 (2)
C1i—O1—C1—C2173.6 (3)C3—C4—C5—C60.0 (5)
O4—O2—C2—N149.7 (2)C9—O3—C6—C56.7 (5)
O4—O2—C2—C131.8 (3)C9—O3—C6—C7172.7 (3)
C3—N—C2—O23.9 (4)C4—C5—C6—O3178.2 (3)
C3—N—C2—C1174.5 (2)C4—C5—C6—C71.2 (5)
O1—C1—C2—O2157.7 (2)O3—C6—C7—C8178.4 (3)
O1—C1—C2—N23.7 (3)C5—C6—C7—C81.1 (5)
C2—N—C3—C4148.3 (3)C4—C3—C8—C71.4 (5)
C2—N—C3—C831.7 (4)N—C3—C8—C7178.6 (3)
C8—C3—C4—C51.3 (5)C6—C7—C8—C30.3 (5)
N—C3—C4—C5178.7 (3)C6—O3—C9—C10174.9 (3)
Symmetry code: (i) x, y, z+5/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0N···O2ii0.862.142.930 (3)153
C4—H4···O4iii0.932.563.469 (3)167
Symmetry codes: (ii) x, y, z+1/2; (iii) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC20H24N2O5·H2O
Mr390.43
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)30.575 (5), 7.929 (1), 8.356 (2)
β (°) 95.09 (2)
V3)2017.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.70 × 0.52 × 0.06
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2017, 1771, 880
Rint0.034
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.124, 0.84
No. of reflections1771
No. of parameters130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.20

Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXTL (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
O1—C1i1.414 (3)O3—C91.424 (3)
O1—C11.414 (3)N—C21.338 (3)
O2—C21.232 (3)N—C31.425 (3)
O2—O42.813 (3)C1—C21.506 (3)
O3—C61.370 (3)C9—C101.503 (4)
C1i—O1—C1110.3 (3)N—C2—C1117.1 (2)
C2—O2—O4118.28 (16)C4—C3—C8118.9 (3)
C6—O3—C9117.8 (2)C4—C3—N119.5 (2)
C2—N—C3126.2 (2)C8—C3—N121.6 (2)
O1—C1—C2112.9 (2)O3—C6—C5125.6 (3)
O2—C2—N124.8 (2)O3—C6—C7115.2 (3)
O2—C2—C1118.1 (2)O3—C9—C10106.8 (3)
Symmetry code: (i) x, y, z+5/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0N···O2ii0.862.142.930 (3)153
C4—H4···O4iii0.932.563.469 (3)167
Symmetry codes: (ii) x, y, z+1/2; (iii) x, y, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds