Download citation
Download citation
link to html
The title compound, C13H13Cl5O4, is a highly substituted tricyclic fused-ring diene formed when a nona­chloro­homocubane slowly reacts with an­hydro­us sodium methoxide in tetra­hydro­furan at room temperature. Four chloro substit­uents on the starting material are replaced by methoxy groups. In addition to this replacement, which was detected by NMR techniques, an unexpected opening of the homocubane cage was discovered by the single-crystal X-ray analysis reported herein.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802007705/cf6169sup1.cif
Contains datablocks eat85mo, 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802007705/cf61692sup2.hkl
Contains datablock 2

CCDC reference: 177582

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.037
  • wR factor = 0.092
  • Data-to-parameter ratio = 16.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
CELLV_02 Alert B The supplied cell volume s.u. differs from that calculated from the cell parameter s.u.'s by > 4 Calculated cell volume su = 8.55 Cell volume su given = 15.00
Yellow Alert Alert Level C:
PLAT_320 Alert C Check Hybridisation of C6 in main residue ?
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
1 Alert Level C = Please check

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) in SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

cis,syn,cis-2,3,4,8,9-Pentachloro-1,5,7,7-tetramethoxy- tricyclo[4.3.0.02,5]nona-3,8-diene top
Crystal data top
C13H13Cl5O4Dx = 1.587 Mg m3
Mr = 410.48Melting point: not measured K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.390 (2) ÅCell parameters from 36 reflections
b = 14.878 (4) Åθ = 5.5–17.8°
c = 15.635 (5) ŵ = 0.86 mm1
β = 91.91 (2)°T = 294 K
V = 1718.1 (15) Å3Truncated octahedron, colorless
Z = 40.50 × 0.44 × 0.16 mm
F(000) = 832
Data collection top
Bruker P4
diffractometer
2609 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 26.0°, θmin = 1.9°
2θ/ω scansh = 99
Absorption correction: integration
(Wuensch & Prewitt, 1965)
k = 018
Tmin = 0.807, Tmax = 0.826l = 019
3371 measured reflections3 standard reflections every 97 reflections
3371 independent reflections intensity decay: 4.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.092H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0371P)2 + 0.9092P]
where P = (Fo2 + 2Fc2)/3
3371 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl90.58738 (9)0.43752 (4)0.67020 (5)0.05135 (18)
Cl10.45659 (9)0.29312 (5)0.81678 (4)0.05333 (19)
Cl30.18248 (12)0.04845 (5)0.68486 (5)0.0693 (2)
Cl40.67040 (11)0.11064 (6)0.70474 (5)0.0768 (3)
Cl50.65016 (11)0.18902 (6)0.48691 (6)0.0746 (3)
O8B0.4122 (2)0.36244 (11)0.50604 (10)0.0435 (4)
O8A0.1609 (2)0.42311 (11)0.57072 (11)0.0463 (4)
O20.0747 (2)0.22921 (13)0.73194 (12)0.0528 (5)
O60.1739 (3)0.13977 (12)0.49045 (11)0.0536 (5)
C80.2977 (3)0.35758 (15)0.57487 (14)0.0361 (5)
C90.4147 (3)0.36189 (15)0.65725 (14)0.0349 (5)
C10.3676 (3)0.30176 (16)0.71445 (13)0.0360 (5)
C20.2252 (3)0.23812 (16)0.68127 (14)0.0376 (5)
C70.1992 (3)0.26772 (15)0.58574 (14)0.0366 (5)
H7A0.07070.27260.56890.044*
C60.2811 (3)0.17807 (16)0.55458 (15)0.0388 (5)
C8A0.2182 (4)0.51533 (17)0.5670 (2)0.0590 (7)
H8AA0.12290.55110.54140.089*
H8AB0.32400.51970.53330.089*
H8AC0.24590.53670.62390.089*
C50.4856 (3)0.16610 (16)0.55752 (17)0.0440 (6)
C40.4940 (3)0.13632 (16)0.63690 (16)0.0433 (6)
C30.2959 (3)0.14391 (16)0.65065 (15)0.0398 (5)
C8B0.3220 (4)0.3510 (2)0.42394 (16)0.0601 (8)
H8BA0.40970.35210.38000.090*
H8BB0.23650.39890.41450.090*
H8BC0.25960.29440.42250.090*
C6A0.2326 (5)0.0549 (2)0.4593 (2)0.0740 (10)
H6AA0.15070.03490.41430.111*
H6AB0.23480.01190.50510.111*
H6AC0.35200.06090.43750.111*
C2A0.0212 (4)0.3109 (2)0.7433 (2)0.0751 (10)
H2AA0.12800.29940.77480.113*
H2AB0.05500.33580.68850.113*
H2AC0.05480.35280.77450.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl90.0452 (3)0.0460 (4)0.0621 (4)0.0090 (3)0.0098 (3)0.0045 (3)
Cl10.0570 (4)0.0721 (5)0.0303 (3)0.0087 (3)0.0071 (3)0.0010 (3)
Cl30.0817 (5)0.0531 (4)0.0729 (5)0.0183 (4)0.0002 (4)0.0222 (4)
Cl40.0629 (5)0.0949 (6)0.0705 (5)0.0337 (4)0.0278 (4)0.0189 (4)
Cl50.0679 (5)0.0767 (5)0.0813 (6)0.0070 (4)0.0342 (4)0.0045 (4)
O8B0.0518 (10)0.0467 (10)0.0321 (9)0.0085 (8)0.0028 (7)0.0024 (7)
O8A0.0426 (9)0.0397 (9)0.0560 (11)0.0042 (7)0.0085 (8)0.0072 (8)
O20.0384 (10)0.0650 (12)0.0559 (11)0.0012 (8)0.0140 (8)0.0152 (9)
O60.0651 (12)0.0441 (10)0.0501 (11)0.0027 (9)0.0214 (9)0.0043 (8)
C80.0362 (12)0.0383 (12)0.0333 (12)0.0011 (10)0.0041 (9)0.0020 (10)
C90.0311 (11)0.0372 (12)0.0362 (12)0.0015 (9)0.0028 (9)0.0062 (10)
C10.0338 (11)0.0469 (13)0.0269 (11)0.0064 (10)0.0021 (9)0.0011 (10)
C20.0320 (12)0.0453 (13)0.0354 (12)0.0004 (10)0.0008 (9)0.0067 (10)
C70.0309 (12)0.0407 (13)0.0377 (12)0.0008 (10)0.0062 (9)0.0053 (10)
C60.0417 (13)0.0372 (12)0.0368 (13)0.0049 (10)0.0071 (10)0.0023 (10)
C8A0.0664 (19)0.0394 (15)0.0698 (19)0.0083 (13)0.0174 (15)0.0039 (13)
C50.0437 (14)0.0400 (13)0.0487 (15)0.0000 (11)0.0064 (11)0.0044 (11)
C40.0438 (14)0.0401 (13)0.0453 (14)0.0072 (11)0.0076 (11)0.0051 (11)
C30.0407 (13)0.0392 (13)0.0391 (13)0.0036 (10)0.0048 (10)0.0101 (10)
C8B0.088 (2)0.0576 (17)0.0345 (14)0.0144 (16)0.0066 (14)0.0051 (12)
C6A0.097 (3)0.0507 (18)0.073 (2)0.0043 (17)0.0237 (19)0.0157 (16)
C2A0.0550 (18)0.085 (2)0.087 (2)0.0233 (17)0.0288 (17)0.0143 (19)
Geometric parameters (Å, º) top
Cl9—C91.708 (2)C7—C61.550 (3)
Cl1—C11.714 (2)C7—H7A0.9800
Cl3—C31.742 (2)C6—C51.520 (3)
Cl4—C41.696 (2)C6—C31.586 (3)
Cl5—C51.704 (3)C8A—H8AA0.960
O8B—C81.393 (3)C8A—H8AB0.960
O8B—C8B1.436 (3)C8A—H8AC0.960
O8A—C81.405 (3)C5—C41.317 (4)
O8A—C8A1.438 (3)C4—C31.491 (3)
O2—C21.393 (3)C8B—H8BA0.960
O2—C2A1.421 (3)C8B—H8BB0.960
O6—C61.380 (3)C8B—H8BC0.960
O6—C6A1.426 (3)C6A—H6AA0.960
C8—C91.529 (3)C6A—H6AB0.960
C8—C71.534 (3)C6A—H6AC0.960
C9—C11.320 (3)C2A—H2AA0.960
C1—C21.495 (3)C2A—H2AB0.960
C2—C71.563 (3)C2A—H2AC0.960
C2—C31.576 (3)
C8—O8B—C8B114.15 (19)O8A—C8A—H8AB109.5
C8—O8A—C8A116.85 (19)H8AA—C8A—H8AB109.5
C2—O2—C2A113.6 (2)O8A—C8A—H8AC109.5
C6—O6—C6A116.1 (2)H8AA—C8A—H8AC109.5
O8B—C8—O8A112.52 (18)H8AB—C8A—H8AC109.5
O8B—C8—C9107.93 (18)C4—C5—C694.8 (2)
O8A—C8—C9113.33 (18)C4—C5—Cl5131.7 (2)
O8B—C8—C7115.68 (19)C6—C5—Cl5133.38 (19)
O8A—C8—C7105.45 (18)C5—C4—C395.4 (2)
C9—C8—C7101.56 (17)C5—C4—Cl4132.5 (2)
C1—C9—C8112.8 (2)C3—C4—Cl4131.65 (19)
C1—C9—Cl9125.39 (18)C4—C3—C2116.6 (2)
C8—C9—Cl9121.79 (17)C4—C3—C685.69 (18)
C9—C1—C2113.12 (19)C2—C3—C689.41 (17)
C9—C1—Cl1125.55 (19)C4—C3—Cl3117.86 (18)
C2—C1—Cl1121.33 (17)C2—C3—Cl3117.64 (17)
O2—C2—C1115.4 (2)C6—C3—Cl3122.22 (17)
O2—C2—C7119.68 (19)O8B—C8B—H8BA109.5
C1—C2—C7102.46 (18)O8B—C8B—H8BB109.5
O2—C2—C3111.55 (19)H8BA—C8B—H8BB109.5
C1—C2—C3115.60 (18)O8B—C8B—H8BC109.5
C7—C2—C389.53 (17)H8BA—C8B—H8BC109.5
C8—C7—C6121.56 (19)H8BB—C8B—H8BC109.5
C8—C7—C2107.92 (18)O6—C6A—H6AA109.5
C6—C7—C291.20 (17)O6—C6A—H6AB109.5
C8—C7—H7A111.4H6AA—C6A—H6AB109.5
C6—C7—H7A111.4O6—C6A—H6AC109.5
C2—C7—H7A111.4H6AA—C6A—H6AC109.5
O6—C6—C5121.3 (2)H6AB—C6A—H6AC109.5
O6—C6—C7111.29 (19)O2—C2A—H2AA109.5
C5—C6—C7119.29 (19)O2—C2A—H2AB109.5
O6—C6—C3125.1 (2)H2AA—C2A—H2AB109.5
C5—C6—C384.07 (17)O2—C2A—H2AC109.5
C7—C6—C389.62 (17)H2AA—C2A—H2AC109.5
O8A—C8A—H8AA109.5H2AB—C2A—H2AC109.5
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds