Download citation
Download citation
link to html
The structure of the title compound, trans-[PdCl(SC6H4NO2-p)(PPh3)2]·0.5C2H4Cl2, in which the 1,2-di­chloro­ethane solvent mol­ecule is subject to the operation of a crystallographic centre of symmetry coincident with the midpoint of the C-C bond, is described and compared with that of the closely analogous trans-[PdCl(SC6H4NO2-o)(PPh3)2]·C3H6O {Cambridge Structural Database [Allen & Kennard (1993). Chem. Des. Autom. News, 8, 1, 31-37] refcode WOBFIC, previously described by Aupers, Ferguson, Glidewell, Low & Wardell [Acta Cryst. (2000), C56, 945-947]}. Aside from obvious differences, such as the number and nature of the solvent mol­ecules and the position of the nitro substituent, there are further differences in the conformation and packing of the mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802006062/cf6164sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802006062/cf6164Isup2.hkl
Contains datablock I

CCDC reference: 185740

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.040
  • wR factor = 0.092
  • Data-to-parameter ratio = 18.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_360 Alert C Short C(sp3)-C(sp3) Bond C(43) - C(43)a = 1.36 Ang.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The structure of the title compound, (I) (Fig. 1), is expected to be similar to that of the analogous trans-chloro(2-nitrobenzenethiolato-S)bis(triphenylphosphine-P)palladium(II), (II) [Cambridge Structural Database (Allen & Kennard, 1993) refcode WOBFIC], as described by Aupers et al. (2000). This is found to be true, but only to a limited extent.

As shown in Table 1, there is good agreement in the bond lengths and angles for (I) and (II). The trans influence associated with the chloro and thiolato ligands and degree of C—C bond fixation in the thiolato phenyl ring noted for (II) by Aupers et al. (2000) applies to (I) also, as do a number of other features. Pd is coordinated in a slightly distorted square-planar manner in both structures, but the nature of the distortion is different in each case. Whereas for (II), the distortion is tetragonal in form, for (I), Pd is at the apex of a much flattened and distorted square pyramid, because here the displacements of Pd1, Cl1, S1, P1 and P2 from the least-squares plane which they define are 0.0373 (3), 0.0131 (3), 0.0162 (4), -0.0335 (4) and -0.0332 (3) Å, respectively. The plane defined by the nitro group and the C atom to which it is attached and that defined by C1/S1/Pd1/Cl1 are at angles, respectively, of 16.3 (2) and 6.2 (2)° to the C1–C6 reference plane in (II). Here, the tilt, or rotation about the C6—N1 bond, of the nitro group in (II) has been associated with a putative S···O interaction as briefly described by Aupers et al. (2000). In (I), the corresponding angles are 5.79 (15) and 23.29 (9)°. The absolute values of the pairwise sums, 1s t + 2nd etc. taking account of signs, of the torsion angles given in Table 2 are all <7° for (II) and indicative, therefore, of an eclipsed disposition of the phenyl groups attached to P from one side of the molecule to the other. For (I), the corresponding sums are all within 12° of 180° corresponding to a staggered arrangement. Present in (I) and totally absent from (II) is the face-to-face overlap (Fig. 1) of phenyl rings C1—C6 and C31—C36, with centroids Cg1 and Cg6, respectively. This intramolecular interaction is characterized by the distances Cg1—Cg6, A, and the perpendicular distances B and C of Cg1 and Cg6, in each case to the other ring, and angles between the planes, between A and B at Cg1 and between A and C at Cg6; these have values of 3.601, 3.457 and 3.277 Å and 10.91, 24.52 and 16.26°, respectively. This corresponds to a lateral displacement of the overlapping rings in a direction parallel to an `average' plane, i.e. one equally inclined to both rings, of 1.277 Å.

In (II), the only significant intermolecular contacts are a weak C—H.·Osolvent bond with D—H, H···A, D···A and D—H···A at 0.95, 2.51, 3.307 (6) Å and 141°, and four C—H..π interactions with H···π in the range 2.60–3.39 Å. None of these involve the o-nitro group in any way. The p-nitro group of (I) is obviously much more accessible and hence it participates in the C—H.·O hydrogen bonds given in Table 3, although this has no obvious effect upon the N—O bond lengths (Table 1). As shown in Fig. 2, these contacts occcur in pairs related by crystallographic centres of symmetry and are found in columns parallel to b, centred on rows which, for the choice of origin used in the structure refinement, are characterized as 1/2,y,0 and 1/2,y,1/2. They serve to interconnect the molecules in layers parallel to (100) and centred on x = 1/2, with the molecules spreading out on either side to leave phenyl groups on the outer surfaces. The aryl surfaces meet in such a way as to leave cavities centred on 0,1/2,0 which accomodate the 1,2-dichloroethane solvent molecules. Also present in the structure of (I) are the C—H..π interactions given in Table 4, one of which involves a methylene H atom of the solvent molecule.

Experimental top

The title compound was obtained by the reaction of (Ph3P)2PdCl2 and Ph3Sn(SC6H4NO2-p) (1:1 molar ratio) in 1,2-dichlorethane. After a short period of heating, the reaction mixture was allowed to evaporate slowly to give (I). Recrystallization from the same solvent provided crystals suitable for analysis [m.p. 463–468 K (decomposition)].

Refinement top

H atoms were placed in calculated positions with C—H distances of 0.95 and 0.99 Å for aryl and methylene H atoms, respectively, and Uiso = 1.2Ueq for all H atoms. The short C—C bond [1.361 (8) Å] of the solvent molecule is attributed to libration on the basis of the comparatively large size and high anisotropy of the displacement parameters of atom C43.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The atomic arrangement in (I) showing the atom-labelling scheme. Non-H atoms are shown as 50% ellipsoids and H atoms as small circles. The identity of unlabelled phenyl C atoms can be deduced from their position in cyclically labelled rings. Dashed lines represent ππ and C—H..π interactions (see text and Table 4).
[Figure 2] Fig. 2. The unit-cell contents of (I). The representation is the same as that of Fig. 1 except that selected atoms only are labelled and in a generic manner, and for clarity, the solvent molecule and all H atoms not involved in the C—H···O interactions (dashed lines) have been omitted.
trans-Chloro(4-nitrobenzenethiolato-S)bis(triphenylphosphine-P)-palladium(II) 1,2-dichloroethane hemi-solvate top
Crystal data top
[PdCl(C6H4NO2S)(C18H15P)2]·0.5C2H4Cl2F(000) = 1772
Mr = 870.03Dx = 1.508 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.3836 (3) ÅCell parameters from 26614 reflections
b = 9.5471 (2) Åθ = 2.9–27.5°
c = 21.7994 (4) ŵ = 0.80 mm1
β = 108.1637 (8)°T = 120 K
V = 3833.11 (12) Å3Block, red
Z = 40.20 × 0.10 × 0.06 mm
Data collection top
Enraf-Nonius KappaCCD area-detector
diffractometer
8764 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode6369 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 2523
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
k = 1212
Tmin = 0.778, Tmax = 0.935l = 2828
38219 measured reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0388P)2]
where P = (Fo2 + 2Fc2)/3
8764 reflections(Δ/σ)max = 0.001
469 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.99 e Å3
Crystal data top
[PdCl(C6H4NO2S)(C18H15P)2]·0.5C2H4Cl2V = 3833.11 (12) Å3
Mr = 870.03Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.3836 (3) ŵ = 0.80 mm1
b = 9.5471 (2) ÅT = 120 K
c = 21.7994 (4) Å0.20 × 0.10 × 0.06 mm
β = 108.1637 (8)°
Data collection top
Enraf-Nonius KappaCCD area-detector
diffractometer
8764 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
6369 reflections with I > 2σ(I)
Tmin = 0.778, Tmax = 0.935Rint = 0.098
38219 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 0.99Δρmax = 0.89 e Å3
8764 reflectionsΔρmin = 0.99 e Å3
469 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Distance D1

2.8442 Pd1 - H6

Distance D2

3.4080 Pd1 - H14

Distance D3

3.1055 Pd1 - H24

Distance D4

2.8977 Pd1 - H26

Distance D5

3.5046 Pd1 - H38

Angle A1

69.12 H24 - Pd1 - H26

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

10.2225 (0.0035) x + 6.6453 (0.0014) y + 6.5079 (0.0045) z = 3.6214 (0.0007)

* 0.0131 (0.0003) Cl1 * 0.0162 (0.0004) S1 * -0.0335 (0.0004) P1 * -0.0332 (0.0003) P2 * 0.0373 (0.0003) Pd1 1.6118 (0.0028) C1 1.7658 (0.0030) C2 2.7491 (0.0028) C6 1.5833 (0.0028) C7 1.9047 (0.0029) C8 2.5690 (0.0029) C12 - 0.5738 (0.0029) C13 - 1.6421 (0.0030) C14 - 0.1112 (0.0032) C18 - 1.2429 (0.0028) C19 - 1.0920 (0.0031) C20 - 2.3902 (0.0028) C24 - 1.7760 (0.0028) C25 - 2.6674 (0.0028) C26 - 2.2471 (0.0031) C30 0.5220 (0.0029) C31 - 0.3190 (0.0030) C32 1.8036 (0.0030) C36 0.8592 (0.0028) C37 2.1850 (0.0030) C38 0.2666 (0.0031) C42

Rms deviation of fitted atoms = 0.0285

17.0456 (0.0142) x - 4.5445 (0.0129) y - 6.1851 (0.0339) z = 3.9571 (0.0171)

Angle to previous plane (with approximate e.s.d.) = 82.67 (0.08)

* -0.0009 (0.0021) N1 * 0.0003 (0.0008) O1 * 0.0003 (0.0008) O2 * 0.0003 (0.0006) C4

Rms deviation of fitted atoms = 0.0005

17.7196 (0.0089) x - 3.8176 (0.0099) y - 7.5910 (0.0232) z = 3.7690 (0.0090)

Angle to previous plane (with approximate e.s.d.) = 5.79 (0.15)

* -0.0056 (0.0019) C1 * 0.0062 (0.0020) C2 * 0.0003 (0.0020) C3 * -0.0073 (0.0020) C4 * 0.0077 (0.0020) C5 * -0.0013 (0.0020) C6 - 0.0060 (0.0042) N1 0.1049 (0.0048) O1 - 0.1127 (0.0049) O2 - 1.7162 (0.0070) Cl1 0.0266 (0.0038) S1 1.3494 (0.0060) P1 - 2.9832 (0.0041) P2 - 0.8289 (0.0050) Pd1

Rms deviation of fitted atoms = 0.0055

18.5171 (0.0076) x - 0.6036 (0.0125) y - 12.4738 (0.0181) z = 2.5377 (0.0050)

Angle to previous plane (with approximate e.s.d.) = 23.39 (0.09)

* -0.0001 (0.0000) C1 * -0.0045 (0.0002) S1 * 0.0093 (0.0003) Pd1 * -0.0046 (0.0002) Cl1

Rms deviation of fitted atoms = 0.0057

17.7196 (0.0089) x - 3.8176 (0.0099) y - 7.5910 (0.0232) z = 3.7690 (0.0090)

Angle to previous plane (with approximate e.s.d.) = 23.39 (0.09)

* -0.0056 (0.0019) C1 * 0.0062 (0.0020) C2 * 0.0003 (0.0020) C3 * -0.0073 (0.0020) C4 * 0.0077 (0.0020) C5 * -0.0013 (0.0020) C6

Rms deviation of fitted atoms = 0.0055

18.6770 (0.0062) x - 2.5010 (0.0110) y - 5.4220 (0.0246) z = 1.5046 (0.0084)

Angle to previous plane (with approximate e.s.d.) = 10.90 (0.10)

* -0.0131 (0.0020) C31 * 0.0148 (0.0020) C32 * -0.0036 (0.0021) C33 * -0.0092 (0.0021) C34 * 0.0107 (0.0021) C35 * 0.0005 (0.0020) C36

Rms deviation of fitted atoms = 0.0100

12.0010 (0.0167) x - 4.9899 (0.0089) y - 16.3471 (0.0153) z = 2.5501 (0.0093)

Angle to previous plane (with approximate e.s.d.) = 45.44 (0.10)

* 0.0087 (0.0019) C7 * -0.0050 (0.0019) C8 * -0.0042 (0.0020) C9 * 0.0097 (0.0020) C10 * -0.0059 (0.0020) C11 * -0.0033 (0.0019) C12 - 2.3464 (0.0056) Cl1 - 2.2553 (0.0045) S1 - 0.0773 (0.0037) P1 - 4.5033 (0.0053) P2 - 2.3012 (0.0044) Pd1

Rms deviation of fitted atoms = 0.0066

0.9439 (0.0216) x - 9.5140 (0.0009) y + 1.0675 (0.0239) z = 0.5579 (0.0069)

Angle to previous plane (with approximate e.s.d.) = 59.24 (0.09)

* 0.0056 (0.0019) C13 * -0.0050 (0.0019) C14 * 0.0007 (0.0020) C15 * 0.0031 (0.0021) C16 * -0.0026 (0.0020) C17 * -0.0018 (0.0020) C18 - 2.2107 (0.0043) Cl1 1.0715 (0.0068) S1 0.3339 (0.0036) P1 - 1.2542 (0.0076) P2 - 0.5712 (0.0053) Pd1

Rms deviation of fitted atoms = 0.0036

- 0.2278 (0.0226) x - 0.5205 (0.0107) y + 20.7608 (0.0077) z = 2.1752 (0.0077)

Angle to previous plane (with approximate e.s.d.) = 83.04 (0.09)

* 0.0027 (0.0019) C19 * -0.0079 (0.0020) C20 * 0.0070 (0.0020) C21 * -0.0010 (0.0021) C22 * -0.0042 (0.0020) C23 * 0.0033 (0.0019) C24 - 1.0105 (0.0068) Cl1 2.5589 (0.0037) S1 - 0.1545 (0.0038) P1 1.8444 (0.0071) P2 0.7926 (0.0052) Pd1

Rms deviation of fitted atoms = 0.0050

7.2717 (0.0208) x - 8.2377 (0.0055) y + 4.4677 (0.0249) z = 1.1163 (0.0033)

Angle to previous plane (with approximate e.s.d.) = 67.61 (0.10)

* 0.0039 (0.0019) C25 * 0.0071 (0.0019) C26 * -0.0107 (0.0020) C27 * 0.0033 (0.0021) C28 * 0.0078 (0.0021) C29 * -0.0113 (0.0021) C30 - 1.1244 (0.0056) Cl1 2.9539 (0.0050) S1 2.0778 (0.0070) P1 - 0.0298 (0.0038) P2 0.9254 (0.0051) Pd1

Rms deviation of fitted atoms = 0.0080

18.6770 (0.0062) x - 2.5010 (0.0110) y - 5.4220 (0.0246) z = 1.5046 (0.0084)

Angle to previous plane (with approximate e.s.d.) = 52.71 (0.10)

* -0.0131 (0.0020) C31 * 0.0148 (0.0020) C32 * -0.0036 (0.0021) C33 * -0.0092 (0.0021) C34 * 0.0107 (0.0021) C35 * 0.0005 (0.0020) C36 1.1253 (0.0075) Cl1 2.9062 (0.0035) S1 4.0699 (0.0064) P1 0.0029 (0.0040) P2 2.0355 (0.0052) Pd1

Rms deviation of fitted atoms = 0.0100

- 5.7000 (0.0211) x - 0.2076 (0.0101) y + 21.7905 (0.0008) z = 3.3342 (0.0051)

Angle to previous plane (with approximate e.s.d.) = 76.96 (0.09)

* 0.0104 (0.0018) C37 * -0.0128 (0.0019) C38 * 0.0044 (0.0020) C39 * 0.0065 (0.0020) C40 * -0.0089 (0.0019) C41 * 0.0003 (0.0019) C42 - 3.0590 (0.0031) Cl1 0.0292 (0.0066) S1 - 2.9812 (0.0067) P1 0.0865 (0.0035) P2 - 1.5030 (0.0048) Pd1

Rms deviation of fitted atoms = 0.0083

'Linear' torsion angles excluded as per PLAT_710 alerts Cl1 Pd1 S1 C1 - 144.5 (12).. . . ? P2 Pd1 P1 C7 - 108.6 (3).. . . ? P2 Pd1 P1 C13 125.9 (3).. . . ? P2 Pd1 P1 C19 9.9 (3).. . . ? P1 Pd1 P2 C25 - 61.5 (3).. . . ? P1 Pd1 P2 C37 - 178.8 (2).. . . ? P1 Pd1 P2 C31 56.5 (3).. . . ?

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H in calculated positions and refined with a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.237650 (11)0.04143 (2)0.146596 (10)0.01358 (7)
Cl10.18582 (4)0.19925 (6)0.06313 (3)0.01894 (16)
S10.28673 (4)0.11720 (7)0.22824 (3)0.01721 (16)
C10.33509 (15)0.0167 (3)0.29481 (13)0.0173 (6)
C20.34940 (16)0.0758 (3)0.35641 (13)0.0194 (6)
H20.33210.16740.36050.023*
C30.38786 (16)0.0040 (3)0.41081 (14)0.0220 (7)
H30.39690.04470.45230.026*
C40.41325 (16)0.1292 (3)0.40411 (13)0.0209 (6)
C50.40163 (16)0.1911 (3)0.34387 (14)0.0212 (6)
H50.42040.28150.34020.025*
C60.36213 (16)0.1179 (3)0.28968 (13)0.0207 (6)
H60.35310.15920.24830.025*
N10.45449 (14)0.2058 (3)0.46170 (12)0.0254 (6)
O10.48213 (12)0.3183 (2)0.45505 (11)0.0366 (6)
O20.46025 (14)0.1548 (2)0.51483 (10)0.0423 (6)
P10.32058 (4)0.05075 (7)0.09957 (3)0.01447 (16)
C70.41168 (15)0.0103 (3)0.14255 (13)0.0164 (6)
C80.45478 (16)0.0606 (3)0.19668 (13)0.0190 (6)
H80.43730.14450.21000.023*
C90.52300 (16)0.0107 (3)0.23147 (14)0.0244 (7)
H90.55190.06020.26830.029*
C100.54902 (17)0.1119 (3)0.21232 (15)0.0273 (7)
H100.59610.14540.23540.033*
C110.50587 (17)0.1847 (3)0.15935 (15)0.0256 (7)
H110.52310.26980.14680.031*
C120.43821 (16)0.1355 (3)0.12456 (14)0.0212 (7)
H120.40930.18640.08820.025*
C130.30722 (16)0.0272 (3)0.01352 (13)0.0181 (6)
C140.23684 (17)0.0379 (3)0.02920 (14)0.0227 (7)
H140.19660.03890.01310.027*
C150.22546 (19)0.0471 (3)0.09551 (14)0.0283 (7)
H150.17750.05530.12440.034*
C160.28403 (19)0.0442 (3)0.11935 (15)0.0302 (8)
H160.27620.05060.16450.036*
C170.35326 (19)0.0320 (3)0.07753 (15)0.0294 (8)
H170.39320.02940.09400.035*
C180.36556 (17)0.0234 (3)0.01094 (14)0.0224 (7)
H180.41370.01500.01760.027*
C190.32472 (16)0.2419 (3)0.10240 (13)0.0169 (6)
C200.38690 (16)0.3132 (3)0.10078 (13)0.0205 (6)
H200.42930.26230.10170.025*
C210.38695 (17)0.4581 (3)0.09787 (14)0.0247 (7)
H210.42970.50680.09790.030*
C220.32401 (18)0.5324 (3)0.09493 (14)0.0245 (7)
H220.32360.63180.09230.029*
C230.26236 (17)0.4615 (3)0.09588 (13)0.0228 (7)
H230.21950.51220.09380.027*
C240.26264 (16)0.3166 (3)0.09988 (13)0.0194 (6)
H240.22010.26830.10090.023*
P20.15302 (4)0.11060 (7)0.19806 (3)0.01460 (16)
C250.06960 (15)0.0128 (3)0.16113 (13)0.0168 (6)
C260.05401 (16)0.0355 (3)0.09804 (13)0.0194 (6)
H260.08770.02000.07510.023*
C270.01013 (16)0.1061 (3)0.06841 (14)0.0242 (7)
H270.02090.13650.02490.029*
C280.05866 (16)0.1323 (3)0.10209 (14)0.0251 (7)
H280.10220.18250.08200.030*
C290.04404 (16)0.0861 (3)0.16464 (14)0.0257 (7)
H290.07730.10480.18770.031*
C300.01899 (16)0.0122 (3)0.19384 (14)0.0222 (7)
H300.02810.02190.23660.027*
C310.17304 (15)0.0784 (3)0.28478 (13)0.0166 (6)
C320.16315 (16)0.0547 (3)0.30701 (14)0.0205 (6)
H320.14620.12900.27710.025*
C330.17800 (17)0.0790 (3)0.37273 (14)0.0257 (7)
H330.16970.16920.38750.031*
C340.20479 (17)0.0278 (3)0.41683 (14)0.0277 (7)
H340.21460.01080.46170.033*
C350.21722 (16)0.1586 (3)0.39560 (14)0.0240 (7)
H350.23680.23120.42580.029*
C360.20102 (16)0.1840 (3)0.32999 (13)0.0208 (6)
H360.20910.27460.31560.025*
C370.12595 (15)0.2952 (3)0.18925 (12)0.0162 (6)
C380.18003 (17)0.3977 (3)0.20331 (13)0.0211 (6)
H380.22970.37110.21480.025*
C390.16127 (18)0.5389 (3)0.20053 (14)0.0259 (7)
H390.19830.60820.21130.031*
C400.08928 (18)0.5788 (3)0.18218 (14)0.0257 (7)
H400.07670.67520.18040.031*
C410.03566 (18)0.4777 (3)0.16649 (14)0.0246 (7)
H410.01390.50520.15300.030*
C420.05337 (16)0.3363 (3)0.17019 (13)0.0213 (7)
H420.01600.26770.15970.026*
Cl20.07860 (5)0.65278 (9)0.00782 (4)0.0421 (2)
C430.0336 (3)0.4767 (5)0.0013 (2)0.0822 (18)
H43A0.03170.41160.03450.099*
H43B0.05860.43080.04310.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01248 (13)0.01458 (11)0.01312 (11)0.00005 (9)0.00319 (9)0.00043 (8)
Cl10.0223 (4)0.0163 (3)0.0167 (3)0.0009 (3)0.0039 (3)0.0011 (3)
S10.0189 (4)0.0158 (3)0.0157 (3)0.0012 (3)0.0035 (3)0.0002 (3)
C10.0100 (15)0.0230 (14)0.0166 (14)0.0033 (12)0.0008 (12)0.0018 (12)
C20.0171 (17)0.0206 (14)0.0203 (15)0.0028 (12)0.0056 (13)0.0006 (12)
C30.0193 (17)0.0284 (15)0.0163 (15)0.0034 (13)0.0025 (13)0.0002 (13)
C40.0150 (17)0.0276 (15)0.0181 (15)0.0015 (13)0.0021 (13)0.0064 (13)
C50.0177 (17)0.0209 (14)0.0246 (16)0.0027 (12)0.0059 (13)0.0028 (13)
C60.0212 (18)0.0228 (15)0.0185 (15)0.0003 (13)0.0068 (13)0.0015 (12)
N10.0176 (15)0.0331 (15)0.0247 (14)0.0007 (12)0.0057 (12)0.0110 (12)
O10.0252 (14)0.0455 (14)0.0391 (14)0.0140 (11)0.0099 (11)0.0197 (11)
O20.0541 (18)0.0507 (15)0.0171 (12)0.0038 (12)0.0036 (12)0.0080 (11)
P10.0130 (4)0.0157 (3)0.0143 (3)0.0007 (3)0.0039 (3)0.0003 (3)
C70.0153 (16)0.0173 (13)0.0183 (14)0.0006 (12)0.0076 (12)0.0042 (12)
C80.0206 (17)0.0216 (14)0.0148 (14)0.0008 (12)0.0056 (13)0.0013 (12)
C90.0188 (18)0.0336 (17)0.0187 (15)0.0043 (14)0.0027 (14)0.0057 (13)
C100.0182 (18)0.0297 (17)0.0317 (18)0.0049 (14)0.0045 (15)0.0136 (15)
C110.0231 (19)0.0204 (15)0.0349 (18)0.0056 (13)0.0114 (15)0.0054 (14)
C120.0206 (18)0.0170 (14)0.0267 (16)0.0002 (12)0.0086 (14)0.0002 (13)
C130.0227 (18)0.0146 (14)0.0165 (14)0.0016 (12)0.0053 (13)0.0007 (11)
C140.0210 (18)0.0218 (15)0.0233 (16)0.0040 (13)0.0042 (14)0.0028 (13)
C150.034 (2)0.0242 (16)0.0181 (15)0.0102 (14)0.0052 (14)0.0023 (13)
C160.049 (2)0.0242 (16)0.0159 (15)0.0108 (15)0.0076 (16)0.0010 (13)
C170.041 (2)0.0302 (17)0.0211 (16)0.0070 (15)0.0161 (16)0.0037 (14)
C180.0246 (18)0.0240 (15)0.0202 (15)0.0018 (13)0.0092 (14)0.0008 (13)
C190.0209 (17)0.0157 (13)0.0148 (14)0.0000 (12)0.0065 (13)0.0003 (11)
C200.0164 (17)0.0212 (14)0.0242 (16)0.0003 (12)0.0069 (13)0.0011 (12)
C210.0245 (19)0.0243 (16)0.0234 (16)0.0083 (14)0.0048 (14)0.0027 (13)
C220.035 (2)0.0166 (15)0.0209 (16)0.0025 (14)0.0068 (15)0.0024 (12)
C230.0266 (19)0.0228 (15)0.0183 (15)0.0075 (13)0.0061 (14)0.0017 (13)
C240.0199 (17)0.0211 (14)0.0174 (15)0.0005 (12)0.0062 (13)0.0014 (12)
P20.0126 (4)0.0166 (3)0.0141 (3)0.0000 (3)0.0033 (3)0.0005 (3)
C250.0140 (16)0.0166 (13)0.0179 (14)0.0008 (11)0.0022 (12)0.0020 (12)
C260.0209 (17)0.0199 (14)0.0178 (14)0.0012 (12)0.0066 (13)0.0001 (12)
C270.0228 (18)0.0254 (15)0.0231 (16)0.0016 (13)0.0054 (14)0.0011 (13)
C280.0147 (17)0.0260 (16)0.0294 (17)0.0041 (13)0.0007 (14)0.0027 (14)
C290.0150 (17)0.0372 (17)0.0248 (16)0.0026 (14)0.0059 (14)0.0061 (14)
C300.0181 (17)0.0315 (16)0.0160 (14)0.0011 (13)0.0036 (13)0.0009 (13)
C310.0131 (16)0.0219 (14)0.0165 (14)0.0037 (12)0.0070 (12)0.0007 (12)
C320.0193 (17)0.0223 (15)0.0207 (15)0.0007 (12)0.0074 (13)0.0012 (12)
C330.0253 (19)0.0300 (17)0.0229 (16)0.0060 (14)0.0089 (14)0.0103 (14)
C340.0243 (19)0.0432 (19)0.0165 (15)0.0073 (15)0.0076 (14)0.0058 (14)
C350.0210 (18)0.0297 (16)0.0192 (15)0.0058 (13)0.0032 (13)0.0057 (13)
C360.0184 (17)0.0225 (14)0.0210 (15)0.0047 (13)0.0052 (13)0.0006 (13)
C370.0190 (17)0.0179 (13)0.0123 (13)0.0015 (12)0.0060 (12)0.0000 (11)
C380.0219 (18)0.0215 (14)0.0204 (15)0.0004 (13)0.0074 (13)0.0008 (13)
C390.034 (2)0.0209 (15)0.0242 (16)0.0051 (14)0.0119 (15)0.0003 (13)
C400.040 (2)0.0196 (15)0.0199 (15)0.0094 (14)0.0128 (15)0.0026 (13)
C410.0262 (19)0.0303 (17)0.0168 (15)0.0095 (14)0.0061 (14)0.0042 (13)
C420.0230 (18)0.0242 (15)0.0174 (15)0.0004 (13)0.0071 (13)0.0004 (12)
Cl20.0341 (5)0.0532 (5)0.0379 (5)0.0036 (4)0.0094 (4)0.0112 (4)
C430.091 (4)0.121 (4)0.026 (2)0.074 (3)0.006 (2)0.003 (2)
Geometric parameters (Å, º) top
Pd1—S12.3045 (7)C21—C221.395 (4)
Pd1—P12.3317 (7)C21—H210.9500
Pd1—Cl12.3346 (7)C22—C231.379 (4)
Pd1—P22.3522 (7)C22—H220.9500
S1—C11.749 (3)C23—C241.387 (4)
C1—C21.403 (4)C23—H230.9500
C1—C61.405 (4)C24—H240.9500
C2—C31.372 (4)P2—C251.823 (3)
C2—H20.9500P2—C371.832 (3)
C3—C41.388 (4)P2—C311.833 (3)
C3—H30.9500C25—C261.392 (4)
C4—C51.393 (4)C25—C301.402 (4)
C4—N11.457 (4)C26—C271.384 (4)
C5—C61.381 (4)C26—H260.9500
C5—H50.9500C27—C281.385 (4)
C6—H60.9500C27—H270.9500
N1—O11.228 (3)C28—C291.376 (4)
N1—O21.229 (3)C28—H280.9500
P1—C71.818 (3)C29—C301.382 (4)
P1—C131.826 (3)C29—H290.9500
P1—C191.827 (3)C30—H300.9500
C7—C81.391 (4)C31—C321.395 (4)
C7—C121.404 (4)C31—C361.395 (4)
C8—C91.388 (4)C32—C331.390 (4)
C8—H80.9500C32—H320.9500
C9—C101.388 (4)C33—C341.386 (4)
C9—H90.9500C33—H330.9500
C10—C111.384 (4)C34—C351.380 (4)
C10—H100.9500C34—H340.9500
C11—C121.377 (4)C35—C361.387 (4)
C11—H110.9500C35—H350.9500
C12—H120.9500C36—H360.9500
C13—C181.393 (4)C37—C421.393 (4)
C13—C141.395 (4)C37—C381.397 (4)
C14—C151.395 (4)C38—C391.393 (4)
C14—H140.9500C38—H380.9500
C15—C161.388 (5)C39—C401.380 (4)
C15—H150.9500C39—H390.9500
C16—C171.372 (5)C40—C411.381 (4)
C16—H160.9500C40—H400.9500
C17—C181.398 (4)C41—C421.389 (4)
C17—H170.9500C41—H410.9500
C18—H180.9500C42—H420.9500
C19—C241.385 (4)Cl2—C431.932 (6)
C19—C201.394 (4)C43—C43i1.361 (8)
C20—C211.385 (4)C43—H43A0.9900
C20—H200.9500C43—H43B0.9900
S1—Pd1—P185.20 (2)C20—C21—H21120.1
S1—Pd1—Cl1178.83 (3)C22—C21—H21120.1
P1—Pd1—Cl195.11 (2)C23—C22—C21119.9 (3)
S1—Pd1—P289.86 (2)C23—C22—H22120.0
P1—Pd1—P2173.99 (2)C21—C22—H22120.0
Cl1—Pd1—P289.76 (2)C22—C23—C24120.3 (3)
C1—S1—Pd1105.41 (9)C22—C23—H23119.9
C2—C1—C6118.5 (2)C24—C23—H23119.9
C2—C1—S1117.9 (2)C19—C24—C23120.2 (3)
C6—C1—S1123.5 (2)C19—C24—H24119.9
C3—C2—C1121.2 (3)C23—C24—H24119.9
C3—C2—H2119.4C25—P2—C37105.10 (13)
C1—C2—H2119.4C25—P2—C31104.07 (13)
C2—C3—C4118.8 (3)C37—P2—C31103.35 (12)
C2—C3—H3120.6C25—P2—Pd1107.46 (9)
C4—C3—H3120.6C37—P2—Pd1116.08 (9)
C3—C4—C5122.0 (3)C31—P2—Pd1119.34 (9)
C3—C4—N1119.1 (2)C26—C25—C30118.4 (3)
C5—C4—N1118.9 (3)C26—C25—P2119.7 (2)
C6—C5—C4118.4 (3)C30—C25—P2121.9 (2)
C6—C5—H5120.8C27—C26—C25120.6 (3)
C4—C5—H5120.8C27—C26—H26119.7
C5—C6—C1121.1 (3)C25—C26—H26119.7
C5—C6—H6119.5C26—C27—C28120.0 (3)
C1—C6—H6119.5C26—C27—H27120.0
O1—N1—O2122.9 (3)C28—C27—H27120.0
O1—N1—C4118.6 (2)C29—C28—C27120.2 (3)
O2—N1—C4118.5 (2)C29—C28—H28119.9
C7—P1—C13107.09 (13)C27—C28—H28119.9
C7—P1—C19106.12 (13)C28—C29—C30120.0 (3)
C13—P1—C1998.53 (12)C28—C29—H29120.0
C7—P1—Pd1110.15 (9)C30—C29—H29120.0
C13—P1—Pd1120.58 (10)C29—C30—C25120.7 (3)
C19—P1—Pd1113.03 (9)C29—C30—H30119.6
C8—C7—C12118.4 (3)C25—C30—H30119.6
C8—C7—P1120.7 (2)C32—C31—C36118.6 (3)
C12—C7—P1120.7 (2)C32—C31—P2120.2 (2)
C9—C8—C7120.9 (3)C36—C31—P2121.2 (2)
C9—C8—H8119.5C33—C32—C31120.2 (3)
C7—C8—H8119.5C33—C32—H32119.9
C8—C9—C10119.9 (3)C31—C32—H32119.9
C8—C9—H9120.0C34—C33—C32120.3 (3)
C10—C9—H9120.0C34—C33—H33119.8
C11—C10—C9119.5 (3)C32—C33—H33119.8
C11—C10—H10120.2C35—C34—C33120.0 (3)
C9—C10—H10120.2C35—C34—H34120.0
C12—C11—C10120.8 (3)C33—C34—H34120.0
C12—C11—H11119.6C34—C35—C36119.8 (3)
C10—C11—H11119.6C34—C35—H35120.1
C11—C12—C7120.4 (3)C36—C35—H35120.1
C11—C12—H12119.8C35—C36—C31121.0 (3)
C7—C12—H12119.8C35—C36—H36119.5
C18—C13—C14119.2 (3)C31—C36—H36119.5
C18—C13—P1121.6 (2)C42—C37—C38119.1 (3)
C14—C13—P1118.2 (2)C42—C37—P2122.1 (2)
C13—C14—C15120.1 (3)C38—C37—P2118.7 (2)
C13—C14—H14119.9C39—C38—C37120.1 (3)
C15—C14—H14119.9C39—C38—H38120.0
C16—C15—C14120.2 (3)C37—C38—H38120.0
C16—C15—H15119.9C40—C39—C38120.4 (3)
C14—C15—H15119.9C40—C39—H39119.8
C17—C16—C15119.8 (3)C38—C39—H39119.8
C17—C16—H16120.1C39—C40—C41119.6 (3)
C15—C16—H16120.1C39—C40—H40120.2
C16—C17—C18120.6 (3)C41—C40—H40120.2
C16—C17—H17119.7C40—C41—C42120.8 (3)
C18—C17—H17119.7C40—C41—H41119.6
C13—C18—C17120.0 (3)C42—C41—H41119.6
C13—C18—H18120.0C41—C42—C37120.0 (3)
C17—C18—H18120.0C41—C42—H42120.0
C24—C19—C20119.6 (3)C37—C42—H42120.0
C24—C19—P1119.0 (2)C43i—C43—Cl299.7 (5)
C20—C19—P1121.1 (2)C43i—C43—H43A111.8
C21—C20—C19120.1 (3)Cl2—C43—H43A111.8
C21—C20—H20119.9C43i—C43—H43B111.8
C19—C20—H20119.9Cl2—C43—H43B111.8
C20—C21—C22119.8 (3)H43A—C43—H43B109.6
P1—Pd1—S1—C1110.06 (10)C21—C22—C23—C240.1 (4)
P2—Pd1—S1—C173.36 (10)C20—C19—C24—C230.1 (4)
Pd1—S1—C1—C2158.1 (2)P1—C19—C24—C23174.0 (2)
Pd1—S1—C1—C623.9 (3)C22—C23—C24—C190.5 (4)
C6—C1—C2—C31.0 (4)S1—Pd1—P2—C2596.09 (9)
S1—C1—C2—C3179.1 (2)Cl1—Pd1—P2—C2582.80 (9)
C1—C2—C3—C40.5 (4)S1—Pd1—P2—C37146.65 (10)
C2—C3—C4—C50.8 (4)Cl1—Pd1—P2—C3734.46 (10)
C2—C3—C4—N1179.7 (2)S1—Pd1—P2—C3121.89 (11)
C3—C4—C5—C61.5 (4)Cl1—Pd1—P2—C31159.22 (11)
N1—C4—C5—C6179.6 (3)C37—P2—C25—C2698.2 (2)
C4—C5—C6—C10.9 (4)C31—P2—C25—C26153.5 (2)
C2—C1—C6—C50.3 (4)Pd1—P2—C25—C2626.0 (2)
S1—C1—C6—C5178.3 (2)C37—P2—C25—C3080.0 (3)
C3—C4—N1—O1173.7 (3)C31—P2—C25—C3028.3 (3)
C5—C4—N1—O15.1 (4)Pd1—P2—C25—C30155.8 (2)
C3—C4—N1—O26.1 (4)C30—C25—C26—C270.3 (4)
C5—C4—N1—O2175.0 (3)P2—C25—C26—C27177.9 (2)
S1—Pd1—P1—C773.92 (10)C25—C26—C27—C281.7 (4)
Cl1—Pd1—P1—C7107.22 (10)C26—C27—C28—C291.3 (4)
S1—Pd1—P1—C13160.60 (10)C27—C28—C29—C300.5 (5)
Cl1—Pd1—P1—C1318.27 (10)C28—C29—C30—C251.9 (5)
S1—Pd1—P1—C1944.60 (10)C26—C25—C30—C291.5 (4)
Cl1—Pd1—P1—C19134.27 (10)P2—C25—C30—C29179.7 (2)
C13—P1—C7—C8140.8 (2)C25—P2—C31—C3240.8 (3)
C19—P1—C7—C836.3 (2)C37—P2—C31—C32150.4 (2)
Pd1—P1—C7—C886.4 (2)Pd1—P2—C31—C3278.9 (2)
C13—P1—C7—C1243.7 (2)C25—P2—C31—C36141.8 (2)
C19—P1—C7—C12148.1 (2)C37—P2—C31—C3632.2 (3)
Pd1—P1—C7—C1289.2 (2)Pd1—P2—C31—C3698.5 (2)
C12—C7—C8—C91.2 (4)C36—C31—C32—C332.8 (4)
P1—C7—C8—C9176.9 (2)P2—C31—C32—C33179.7 (2)
C7—C8—C9—C100.0 (4)C31—C32—C33—C341.9 (4)
C8—C9—C10—C111.4 (4)C32—C33—C34—C350.3 (5)
C9—C10—C11—C121.5 (4)C33—C34—C35—C361.7 (5)
C10—C11—C12—C70.3 (4)C34—C35—C36—C310.8 (4)
C8—C7—C12—C111.1 (4)C32—C31—C36—C351.4 (4)
P1—C7—C12—C11176.7 (2)P2—C31—C36—C35178.9 (2)
C7—P1—C13—C1824.7 (3)C25—P2—C37—C4211.8 (2)
C19—P1—C13—C1885.2 (2)C31—P2—C37—C4297.1 (2)
Pd1—P1—C13—C18151.60 (19)Pd1—P2—C37—C42130.3 (2)
C7—P1—C13—C14166.5 (2)C25—P2—C37—C38169.4 (2)
C19—P1—C13—C1483.6 (2)C31—P2—C37—C3881.7 (2)
Pd1—P1—C13—C1439.6 (2)Pd1—P2—C37—C3850.9 (2)
C18—C13—C14—C151.1 (4)C42—C37—C38—C392.4 (4)
P1—C13—C14—C15167.9 (2)P2—C37—C38—C39176.4 (2)
C13—C14—C15—C160.7 (4)C37—C38—C39—C401.8 (4)
C14—C15—C16—C170.1 (4)C38—C39—C40—C410.0 (4)
C15—C16—C17—C180.4 (4)C39—C40—C41—C421.3 (4)
C14—C13—C18—C170.8 (4)C40—C41—C42—C370.7 (4)
P1—C13—C18—C17167.9 (2)C38—C37—C42—C411.1 (4)
C16—C17—C18—C130.0 (4)P2—C37—C42—C41177.6 (2)
C7—P1—C19—C24152.2 (2)C7—P1—P2—C25168.28 (13)
C13—P1—C19—C2497.1 (2)C7—P1—P2—C3152.43 (14)
Pd1—P1—C19—C2431.4 (2)C7—P1—P2—C3773.70 (14)
C7—P1—C19—C2034.0 (3)C13—P1—P2—C2563.65 (14)
C13—P1—C19—C2076.7 (2)C13—P1—P2—C31179.50 (14)
Pd1—P1—C19—C20154.8 (2)C13—P1—P2—C3754.37 (15)
C24—C19—C20—C211.2 (4)C19—P1—P2—C2551.05 (13)
P1—C19—C20—C21174.9 (2)C19—P1—P2—C3164.80 (14)
C19—C20—C21—C221.6 (4)C19—P1—P2—C37169.07 (14)
C20—C21—C22—C230.9 (4)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[PdCl(C6H4NO2S)(C18H15P)2]·0.5C2H4Cl2
Mr870.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)19.3836 (3), 9.5471 (2), 21.7994 (4)
β (°) 108.1637 (8)
V3)3833.11 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.20 × 0.10 × 0.06
Data collection
DiffractometerEnraf-Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.778, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
38219, 8764, 6369
Rint0.098
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.092, 0.99
No. of reflections8764
No. of parameters469
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.99

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97 and PLATON (Spek, 1990).

Selected bond lengths and anglesa (Å, °) for (I) and (II)b top
(I)(II)
Pd1—S12.3045 (7)2.3020 (11)
Pd1—P12.3317 (7)2.3366 (13)
Pd1—P22.3522 (7)2.3303 (12)
Pd1—Cl12.3346 (7)2.3550 (11)
S1—C11.749 (3)1.744 (4)
O1—N11.228 (3)1.228 (4)
O2—N11.229 (3)1.237 (4)
N1—C41.457 (4)1.458 (5)
Cl1—Pd1—P195.11 (2)89.56 (4)
Cl1—Pd1—P289.76 (2)88.59 (4)
S1—Pd1—P185.20 (2)90.63 (4)
S1—Pd1—P289.86 (2)91.69 (4)
Cl1—Pd1—S1178.83 (3)174.19 (3)
P1—Pd1—P2173.99 (2)174.98 (3)
C1—S1—Pd1105.41 (9)105.52 (4)
C2—C1—C6118.5 (2)113.8 (4)
C2—C1—S1117.9 (2)121.2 (3)
C6—C1—S1123.5 (2)125.0 (3)
O1—N1—O2122.9 (3)122.4 (4)
O1—N1—C4118.6 (2)118.9 (3)
O2—N1—C4118.5 (2)118.6 (4)
C3—C4—C5122.0 (3)122.7 (4)
C3—C4—N1119.1 (2)121.3 (4)
C5—C4—N1118.9 (3)116.0 (4)
Notes: (a) With the exception of atoms C3 and C4, which should be read as C1 and C6 for (II), the atom designations are equally applicable to both structures; (b) Aupers et al. (2000).
Selected torsion angles (°) for (I) and (II) top
(I)(II)
Cl1-Pd1-P1-C13-18.27 (10)Cl1-Pd1-P1-C121-45.54 (13)
Cl1-Pd1-P2-C31-159.22 (11)Cl1-Pd1-P2-C21151.41 (12)
Cl1-Pd1-P1-C7107.22 (10)Cl1-Pd1-P1-C13174.17 (13)
Cl1-Pd1-P2-C2582.80 (9)Cl1-Pd1-P2-C231-67.66 (13)
Cl1-Pd1-P1-C19-134.27 (10)Cl1-Pd1-P1-C111-165.77 (15)
Cl1-Pd1-P2-C37-34.46 (10)Cl1-Pd1-P2-C221171.16 (14)
Hydrogen-bonding geometry (Å, °) in (I) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.952.493.200 (4)131
C20—H20···O1i0.952.533.381 (4)149
C21—H21···O2ii0.952.513.229 (4)133
Symmetry codes: (i) 1-x, y-1/2, 1/2-z; (ii) x, -1/2-y, z-1/2.
Intermolecular C—H..π contacts (Å, °) for (I) top
C—H···πC—HH···CgHperpγX-H···CgX···Cg
C29-H29..Cg7i0.953.032.9513.361453.84
C35-H35..Cg3ii0.953.102.9716.531473.93
C40-H40..Cg5iii0.952.922.920.931603.83
C43-H43B..Cg70.992.952.8216.961503.84
Notes: Cg represents the centroid of the corresponding phenyl ring as 3: C13-C18; 5: C25-C30; 7: C37-C42 and γ is the angle subtended at H by the vectors H···Cg and Hperp which last is the perpendicular distance of H from the plane of the phenyl ring. [Symmetry codes: (i) -x, y-1/2, 1/2-z; (ii) x, 1/2-y, 1/2+z; (iii) x, 1+y, z.]
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds