Download citation
Download citation
link to html
In the title compound, [Ni(C26H22P2)2](ClO4)2, the Ni atom lies on an inversion centre and is square-planar coordinated by four P atoms from two bidentate ligands. The average Ni-P bond length is 2.2374 (7) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802007213/cf6161sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802007213/cf6161Isup2.hkl
Contains datablock I

CCDC reference: 185763

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.032
  • wR factor = 0.106
  • Data-to-parameter ratio = 13.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

In recent years, much attention has been given to transition metal phosphine complexes for their antitumor activities and catalysis. We have synthesized the title compound, (I), and determined its crystal structure. The Ni atom lies on an inversion centre and is square-planar coordinated by four P atoms from two bidentate ligands. The average Ni—P bond length is 2.2374 (7) Å, with individual values of 2.2258 (7) and 2.2490 (8) Å. The connection of two phosphine groups by an ethene bridge is unusual, most diphosphines having saturated links composed of one or more methylene groups (Li et al., 2000).

In the title compound, (I) (Fig. 1), the phenyl groups lie approximately perpendicular to the metal coordination plane, with dihedral angles ranging from 76.0 (2) to 88.7 (2)°. The nickel centre is relatively exposed, and this may be the reason for the anti-tumor and catalytic activity of the complex.

The crystal packing is shown in Fig. 2.

Experimental top

1,2-Bis(diphenylphosphino)ethene was prepared from chlorodiphenylphosphine, by treatment with lithium, trimethylsilyl chloride and 1,2-dichloroethene in three stages. The ligand (88 mg, 0.22 mmol) was dissolved in ethanol (1 mmol) and Ni(ClO4)·6H2O (40 mg, 0.11 mmol) was added in acetonitrile, with stirring at room temperature. The filtered red solution was subjected to vapour diffussion by diethyl ether for several weeks, yielding orange crystals suitable for X-ray diffraction analysis.

Refinement top

All H atoms were placed in geometrically calculated positions and constrained with C—H = 0.96 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4-PC (Enraf-Nonius, 1989); cell refinement: CAD-4-PC; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The cation of the title compound, with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing, viewed down the c axis.
Bis[1,2-bis(diphenylphosphino)ethene)]nickel(II) diperchlorate top
Crystal data top
[Ni(C26H22P2)2](ClO4)2F(000) = 1084
Mr = 1050.34Dx = 1.511 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 10.845 (1) Åθ = 9.2–13.9°
b = 16.198 (1) ŵ = 0.73 mm1
c = 13.198 (1) ÅT = 293 K
β = 95.26 (1)°Block, orange
V = 2308.7 (3) Å30.30 × 0.20 × 0.20 mm
Z = 2
Data collection top
Enraf-Nonius CAD-4
diffractometer
3195 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω/2θ scansh = 1212
Absorption correction: ψ scan
(North et al., 1968)
k = 019
Tmin = 0.839, Tmax = 0.864l = 015
4029 measured reflections5 standard reflections every 100 reflections
4029 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.03P)2 + 0.65P]
where P = (Fo2 + 2Fc2)/3
4029 reflections(Δ/σ)max = 0.001
304 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Ni(C26H22P2)2](ClO4)2V = 2308.7 (3) Å3
Mr = 1050.34Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.845 (1) ŵ = 0.73 mm1
b = 16.198 (1) ÅT = 293 K
c = 13.198 (1) Å0.30 × 0.20 × 0.20 mm
β = 95.26 (1)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
3195 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.056
Tmin = 0.839, Tmax = 0.8645 standard reflections every 100 reflections
4029 measured reflections intensity decay: none
4029 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 0.91Δρmax = 0.33 e Å3
4029 reflectionsΔρmin = 0.43 e Å3
304 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 0.7755 (0.0187) x - 15.3579 (0.0091) y + 4.1569 (0.0211) z = 1.9792 (0.0164)

* 0.0169 (0.0024) C41 * -0.0200 (0.0028) C42 * 0.0013 (0.0034) C43 * 0.0209 (0.0036) C44 * -0.0249 (0.0034) C45 * 0.0058 (0.0029) C46

Rms deviation of fitted atoms = 0.0172

8.6617 (0.0098) x + 9.6128 (0.0200) y + 0.3423 (0.0229) z = 2.0423 (0.0142)

Angle to previous plane (with approximate e.s.d.) = 53.92 (0.13)

* -0.0083 (0.0022) C31 * -0.0020 (0.0029) C32 * 0.0136 (0.0030) C33 * -0.0150 (0.0028) C34 * 0.0048 (0.0027) C35 * 0.0069 (0.0023) C36

Rms deviation of fitted atoms = 0.0096

8.2028 (0.0121) x - 2.9101 (0.0245) y + 7.3513 (0.0184) z = 3.1605 (0.0128)

Angle to previous plane (with approximate e.s.d.) = 55.94 (0.12)

* -0.0084 (0.0023) C21 * 0.0226 (0.0025) C22 * -0.0176 (0.0030) C23 * -0.0019 (0.0031) C24 * 0.0153 (0.0030) C25 * -0.0101 (0.0027) C26

Rms deviation of fitted atoms = 0.0143

7.2749 (0.0144) x + 11.7191 (0.0203) y - 2.9546 (0.0232) z = 0.6019 (0.0082)

Angle to previous plane (with approximate e.s.d.) = 74.05 (0.12)

* -0.0165 (0.0027) C11 * 0.0037 (0.0026) C12 * 0.0135 (0.0029) C13 * -0.0171 (0.0032) C14 * 0.0033 (0.0035) C15 * 0.0132 (0.0033) C16

Rms deviation of fitted atoms = 0.0126

- 8.7419 (0.0039) x - 9.3212 (0.0075) y + 2.7912 (0.0010) z = 0.2791 (0.0001)

Angle to previous plane (with approximate e.s.d.) = 11.60 (0.18)

* -0.5297 (0.0003) P1 * -0.5696 (0.0003) P2 * 1.1165 (0.0004) Ni * -0.0285 (0.0003) P1_$1 * 0.0114 (0.0002) P2_$1

Rms deviation of fitted atoms = 0.6087

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.00000.00000.50000.02783 (15)
P10.03577 (7)0.12371 (5)0.43539 (7)0.0517 (2)
P20.20327 (7)0.00574 (5)0.55170 (7)0.0529 (2)
C110.0311 (3)0.1488 (2)0.3155 (3)0.0626 (7)
C120.1252 (3)0.2047 (2)0.2989 (2)0.0548 (7)
H12A0.14660.23690.35580.080*
C130.1830 (4)0.2181 (2)0.2064 (3)0.0700 (9)
H13A0.23950.26360.19610.080*
C140.1479 (5)0.1753 (3)0.1330 (3)0.0825 (11)
H14A0.20110.17350.07070.080*
C160.0085 (5)0.1068 (2)0.2365 (3)0.0889 (13)
H16A0.08110.07270.24290.080*
C210.0017 (3)0.21010 (18)0.5101 (2)0.0516 (6)
C220.0696 (3)0.2012 (2)0.5903 (3)0.0648 (8)
H22A0.09580.14680.60760.080*
C230.0975 (4)0.2652 (3)0.6413 (3)0.0827 (10)
H23A0.15380.25810.69270.080*
C240.0539 (5)0.3428 (3)0.6255 (3)0.0901 (12)
H24A0.07580.38970.66450.080*
C250.0208 (5)0.3528 (2)0.5485 (3)0.0910 (12)
H25A0.05940.40510.53820.080*
C260.0448 (4)0.2875 (2)0.4924 (3)0.0744 (10)
H26A0.08690.29590.43240.080*
C310.3042 (2)0.0818 (2)0.5411 (2)0.0489 (6)
C320.3373 (4)0.1077 (3)0.4522 (3)0.0802 (11)
H32A0.30000.08000.39280.080*
C340.4558 (4)0.2185 (3)0.5240 (3)0.0756 (9)
H34A0.51050.26420.51650.080*
C350.4264 (4)0.1930 (2)0.6098 (3)0.0699 (9)
H35A0.45340.22480.66910.080*
C360.3524 (3)0.12651 (17)0.6227 (2)0.0481 (6)
H36A0.33490.11040.68990.080*
C410.2284 (3)0.04100 (18)0.6743 (2)0.0536 (6)
C420.3471 (3)0.0498 (2)0.7199 (3)0.0698 (9)
H42A0.41650.03980.68140.080*
C430.3644 (4)0.0742 (3)0.8185 (4)0.0876 (12)
H43A0.44590.07810.85330.080*
C440.2653 (4)0.0915 (3)0.8686 (4)0.0913 (13)
H44A0.27510.10500.93970.080*
C450.1476 (4)0.0869 (3)0.8187 (4)0.0835 (11)
H45A0.08080.10650.85520.080*
C460.1280 (3)0.0608 (2)0.7261 (3)0.0670 (8)
H46A0.04620.05210.69370.080*
Cl0.76535 (10)0.08822 (7)0.83109 (7)0.0756 (3)
O10.7351 (9)0.1666 (4)0.8218 (5)0.247 (4)
O20.6706 (7)0.0509 (5)0.8487 (6)0.222 (3)
O30.8277 (6)0.0642 (4)0.7527 (4)0.187 (2)
O40.8352 (8)0.0572 (6)0.9128 (4)0.235 (3)
C330.4117 (4)0.1728 (4)0.4433 (3)0.0872 (11)
H33A0.43390.18940.37760.080*
C150.0543 (6)0.1213 (3)0.1428 (3)0.1006 (16)
H15A0.02630.09500.08390.080*
C10.2030 (3)0.1316 (3)0.4225 (4)0.0854 (13)
H1A0.23530.16910.37520.080*
C20.2741 (4)0.0861 (3)0.4816 (4)0.0959 (15)
H2A0.36240.09250.48690.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0327 (3)0.0270 (3)0.0234 (2)0.00064 (13)0.00114 (18)0.00066 (13)
P10.0394 (4)0.0417 (4)0.0749 (5)0.0012 (3)0.0095 (4)0.0254 (4)
P20.0356 (4)0.0636 (5)0.0574 (5)0.0090 (3)0.0069 (3)0.0296 (4)
C110.0597 (17)0.0582 (19)0.0720 (15)0.0056 (14)0.0172 (14)0.0246 (14)
C120.0562 (17)0.0597 (19)0.0493 (14)0.0057 (13)0.0084 (13)0.0111 (13)
C130.080 (2)0.068 (2)0.0611 (17)0.0027 (17)0.0045 (16)0.0132 (16)
C140.117 (3)0.074 (3)0.0549 (17)0.0213 (19)0.0006 (19)0.0068 (16)
C160.122 (3)0.066 (2)0.0870 (19)0.037 (2)0.053 (2)0.024 (2)
C210.0505 (16)0.0306 (13)0.0689 (16)0.0037 (10)0.0197 (12)0.0199 (10)
C220.065 (2)0.0527 (16)0.075 (2)0.0027 (15)0.0084 (14)0.0098 (14)
C230.091 (3)0.080 (2)0.075 (2)0.001 (2)0.0045 (19)0.0022 (18)
C240.116 (3)0.066 (2)0.080 (2)0.009 (2)0.0355 (19)0.0189 (19)
C250.132 (4)0.0461 (18)0.087 (3)0.015 (2)0.033 (2)0.0144 (16)
C260.096 (3)0.0480 (16)0.075 (2)0.0243 (18)0.0176 (17)0.0184 (14)
C310.0280 (11)0.0775 (17)0.0407 (12)0.0078 (11)0.0004 (10)0.0128 (11)
C320.0555 (19)0.143 (3)0.0412 (14)0.0018 (19)0.0010 (14)0.0051 (18)
C340.055 (2)0.085 (3)0.088 (2)0.0041 (17)0.0127 (17)0.0165 (19)
C350.073 (2)0.069 (2)0.0681 (18)0.0105 (16)0.0099 (17)0.0032 (17)
C360.0566 (17)0.0425 (14)0.0440 (13)0.0058 (11)0.0023 (12)0.0058 (11)
C410.0483 (14)0.0400 (14)0.0687 (12)0.0061 (11)0.0141 (11)0.0128 (11)
C420.0480 (15)0.0561 (18)0.101 (2)0.0084 (15)0.0154 (16)0.0110 (18)
C430.065 (2)0.076 (2)0.115 (3)0.008 (2)0.0263 (19)0.036 (2)
C440.086 (2)0.098 (3)0.085 (3)0.012 (2)0.0181 (18)0.028 (2)
C450.070 (2)0.091 (3)0.089 (2)0.009 (2)0.0048 (18)0.019 (2)
C460.0511 (16)0.066 (2)0.0813 (19)0.0173 (15)0.0077 (14)0.0014 (17)
Cl0.0793 (6)0.0904 (7)0.0606 (5)0.0006 (5)0.0257 (5)0.0144 (4)
O10.434 (11)0.128 (3)0.207 (6)0.077 (4)0.182 (7)0.021 (4)
O20.181 (4)0.216 (6)0.284 (8)0.042 (5)0.104 (4)0.019 (6)
O30.235 (6)0.212 (5)0.126 (3)0.083 (4)0.088 (4)0.005 (3)
O40.260 (6)0.330 (9)0.114 (3)0.101 (7)0.014 (4)0.010 (5)
C330.063 (2)0.139 (4)0.0630 (19)0.013 (2)0.0220 (17)0.001 (2)
C150.175 (5)0.066 (3)0.0690 (18)0.017 (3)0.055 (2)0.005 (2)
C10.0373 (15)0.081 (2)0.131 (3)0.0041 (15)0.0244 (17)0.063 (2)
C20.0382 (16)0.134 (3)0.106 (3)0.0185 (19)0.0065 (19)0.069 (3)
Geometric parameters (Å, º) top
Ni—P1i2.2258 (7)C31—C321.327 (5)
Ni—P12.2258 (7)C31—C361.361 (4)
Ni—P22.2490 (8)C32—C331.339 (7)
Ni—P2i2.2490 (8)C32—H32A0.960
P1—C111.728 (4)C34—C351.272 (5)
P1—C211.770 (4)C34—C331.347 (6)
P1—C11.841 (4)C34—H34A0.960
P2—C411.714 (3)C35—C361.364 (5)
P2—C311.805 (3)C35—H35A0.960
P2—C21.809 (4)C36—H36A0.960
C11—C161.348 (5)C41—C421.378 (4)
C11—C121.367 (5)C41—C461.376 (5)
C12—C131.338 (5)C42—C431.356 (6)
C12—H12A0.960C42—H42A0.960
C13—C141.277 (6)C43—C441.343 (7)
C13—H13A0.960C43—H43A0.960
C14—C151.337 (7)C44—C451.383 (6)
C14—H14A0.960C44—H44A0.960
C16—C151.376 (7)C45—C461.292 (6)
C16—H16A0.960C45—H45A0.960
C21—C261.365 (4)C46—H46A0.960
C21—C221.374 (5)Cl—O21.232 (6)
C22—C231.287 (6)Cl—O11.314 (6)
C22—H22A0.960Cl—O41.357 (7)
C23—C241.365 (6)Cl—O31.344 (4)
C23—H23A0.960C33—H33A0.960
C24—C251.366 (7)C15—H15A0.960
C24—H24A0.960C1—C21.279 (5)
C25—C261.331 (6)C1—H1A0.960
C25—H25A0.960C2—H2A0.960
C26—H26A0.960
P1i—Ni—P1180.00C32—C31—C36114.6 (3)
P1i—Ni—P296.97 (3)C32—C31—P2122.2 (3)
P1—Ni—P283.03 (3)C36—C31—P2123.3 (2)
P1i—Ni—P2i83.03 (3)C31—C32—C33122.7 (4)
P1—Ni—P2i96.97 (3)C31—C32—H32A116.6
P2—Ni—P2i180.0C33—C32—H32A120.6
C11—P1—C21103.44 (15)C35—C34—C33115.2 (4)
C11—P1—C1103.50 (18)C35—C34—H34A123.3
C21—P1—C1104.74 (19)C33—C34—H34A121.3
C11—P1—Ni119.31 (13)C34—C35—C36124.4 (4)
C21—P1—Ni116.45 (10)C34—C35—H35A118.0
C1—P1—Ni107.80 (12)C36—C35—H35A117.4
C41—P2—C31106.85 (14)C31—C36—C35120.6 (3)
C41—P2—C2101.8 (2)C31—C36—H36A119.5
C31—P2—C2103.7 (2)C35—C36—H36A119.9
C41—P2—Ni111.51 (12)C42—C41—C46120.5 (3)
C31—P2—Ni121.93 (10)C42—C41—P2120.6 (3)
C2—P2—Ni108.96 (13)C46—C41—P2118.9 (2)
C16—C11—C12119.8 (4)C43—C42—C41119.5 (4)
C16—C11—P1116.9 (3)C43—C42—H42A120.7
C12—C11—P1123.2 (3)C41—C42—H42A119.8
C13—C12—C11122.3 (4)C44—C43—C42119.1 (4)
C13—C12—H12A120.0C44—C43—H43A119.6
C11—C12—H12A117.6C42—C43—H43A121.3
C14—C13—C12117.2 (4)C43—C44—C45120.0 (4)
C14—C13—H13A122.7C43—C44—H44A120.5
C12—C13—H13A119.5C45—C44—H44A119.5
C13—C14—C15123.9 (4)C46—C45—C44122.2 (5)
C13—C14—H14A117.9C46—C45—H45A121.1
C15—C14—H14A117.1C44—C45—H45A116.7
C11—C16—C15116.3 (4)C45—C46—C41118.5 (4)
C11—C16—H16A122.7C45—C46—H46A122.3
C15—C16—H16A120.7C41—C46—H46A119.0
C26—C21—C22117.0 (4)O2—Cl—O1106.6 (5)
C26—C21—P1122.5 (3)O2—Cl—O494.7 (6)
C22—C21—P1120.5 (2)O1—Cl—O4123.3 (5)
C23—C22—C21119.6 (4)O2—Cl—O3119.4 (5)
C23—C22—H22A121.7O1—Cl—O3110.3 (4)
C21—C22—H22A118.6O4—Cl—O3102.8 (4)
C22—C23—C24124.1 (5)C32—C33—C34122.4 (4)
C22—C23—H23A117.9C32—C33—H33A120.2
C24—C23—H23A118.0C34—C33—H33A117.4
C25—C24—C23117.4 (4)C14—C15—C16120.5 (4)
C25—C24—H24A119.8C14—C15—H15A120.3
C23—C24—H24A122.8C16—C15—H15A119.0
C26—C25—C24118.6 (4)C2—C1—P1116.6 (3)
C26—C25—H25A120.8C2—C1—H1A121.7
C24—C25—H25A120.4P1—C1—H1A121.7
C25—C26—C21123.2 (4)C1—C2—P2117.8 (3)
C25—C26—H26A118.6C1—C2—H2A121.6
C21—C26—H26A117.9P2—C2—H2A120.6
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C26H22P2)2](ClO4)2
Mr1050.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.845 (1), 16.198 (1), 13.198 (1)
β (°) 95.26 (1)
V3)2308.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.839, 0.864
No. of measured, independent and
observed [I > 2σ(I)] reflections
4029, 4029, 3195
Rint0.056
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.106, 0.91
No. of reflections4029
No. of parameters304
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.43

Computer programs: CAD-4-PC (Enraf-Nonius, 1989), CAD-4-PC, TEXSAN (Molecular Structure Corporation, 1989), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Ni—P12.2258 (7)P2—C21.809 (4)
Ni—P22.2490 (8)C1—C21.279 (5)
P1—C11.841 (4)
P1i—Ni—P296.97 (3)C2—C1—P1116.6 (3)
C1—P1—Ni107.80 (12)C1—C2—P2117.8 (3)
C2—P2—Ni108.96 (13)
Symmetry code: (i) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds