Download citation
Download citation
link to html
In the crystal structure of the title compound, C18H16, the two nearly planar halves of the mol­ecule [maximum deviations from planarity 0.0324 (13) and 0.0441 (11) Å] are connected via two C-C bonds which are formed between one C atom in the five-membered ring of one half and two neighbouring C atoms in the five-membered ring of the other half, forming a central three-membered C ring with C-C distances between the rings of 1.5321 (19) and 1.5040 (18) Å. The dihedral angle between the least-squares planes through the non-H atoms of the mol­ecule halves is 86.56 (3)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680102116X/cf6135sup1.cif
Contains datablocks I, ccd1624

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680102116X/cf6135Isup2.hkl
Contains datablock I

CCDC reference: 180550

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.046
  • wR factor = 0.140
  • Data-to-parameter ratio = 18.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

In the course of our investigations on the four possible biindenylidene isomers, we have already reported a second modification of (E)-2,3,2',3'-tetrahydro-[1,1']biindenylidene (Jovanovic et al., 2001a) and the crystal structure of 1,3,1',3'-tetrahydro-[2,2']biindenylidene (Jovanovic et al., 2001b). We wished next to determine the crystal structure of 2,3,1',3'-tetrahydro-[1,2']-biindenylidene, (I), and synthesized it following the description of Bell & Spanswick (1966). The compound we obtained had the same melting point and molecular weight as previously reported for the structure (I), but our crystallographic investigations show that it actually has the structure (II).

Experimental top

Spiro[1,1a,6,6a-tetrahydro-cyclopropa[a]indene-1,1'-2',3'-dihydro-1'H-indene] was synthesized through the aldol condensation of 1H-indan-1-one and the Huang-Minlon reduction of the self-condensation product according to the method of Bell & Spanswick (1966). It was isolated by crystallization from propan-2-ol.

Refinement top

H atoms were placed in calculated positions with Uiso constrained to be 1.2 times Ueq of the carrier atom.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97, PARST95 (Nardelli, 1995) and PLATON (Spek, 2001).

Figures top
[Figure 1] Fig. 1. View of the title compound (XP; Sheldrick, 1991) showing the labelling of all non-H atoms. Displacement ellipsoids are shown at the 50% probability level.
(I) top
Crystal data top
C18H16F(000) = 496
Mr = 232.31Dx = 1.188 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.0256 (1) ÅCell parameters from 13022 reflections
b = 12.5288 (2) Åθ = 3.2–27.5°
c = 14.8003 (4) ŵ = 0.07 mm1
β = 94.3527 (9)°T = 291 K
V = 1299.00 (4) Å3Block, colourless
Z = 40.48 × 0.45 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
1842 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
Detector resolution: 10 vertical, 18 horizontal pixels mm-1h = 99
318 frames via ω–rotation (Δω=1°) with 3 sets at different κ–angles and two times 60 s per frame scansk = 1616
13022 measured reflectionsl = 1919
2965 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0785P)2]
where P = (Fo2 + 2Fc2)/3
2965 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C18H16V = 1299.00 (4) Å3
Mr = 232.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0256 (1) ŵ = 0.07 mm1
b = 12.5288 (2) ÅT = 291 K
c = 14.8003 (4) Å0.48 × 0.45 × 0.15 mm
β = 94.3527 (9)°
Data collection top
Nonius KappaCCD
diffractometer
1842 reflections with I > 2σ(I)
13022 measured reflectionsRint = 0.031
2965 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.07Δρmax = 0.21 e Å3
2965 reflectionsΔρmin = 0.16 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.28206 (18)0.87197 (10)0.14870 (9)0.0475 (3)
C20.4409 (2)0.91286 (11)0.09391 (11)0.0645 (4)
H2A0.39910.97580.05970.077*
H2B0.55200.93160.13370.077*
C30.4894 (2)0.82389 (12)0.03024 (12)0.0705 (5)
H3A0.46170.84530.03240.085*
H3B0.62350.80530.03930.085*
C40.36662 (18)0.73145 (10)0.05319 (9)0.0495 (3)
C50.3579 (2)0.63003 (11)0.01622 (10)0.0571 (4)
H50.43530.61180.02960.068*
C60.2336 (2)0.55618 (11)0.04777 (10)0.0597 (4)
H60.22650.48800.02290.072*
C70.1196 (2)0.58315 (11)0.11616 (11)0.0642 (4)
H70.03700.53260.13750.077*
C80.1266 (2)0.68398 (11)0.15324 (10)0.0597 (4)
H80.04930.70170.19930.072*
C90.25020 (18)0.75890 (10)0.12115 (8)0.0469 (3)
C110.10924 (19)0.94012 (10)0.16884 (9)0.0518 (4)
H110.01840.90810.16530.062*
C120.25542 (19)0.90745 (10)0.24399 (9)0.0526 (4)
H120.21960.85420.28810.063*
C130.3586 (2)1.00735 (10)0.27835 (10)0.0607 (4)
H13A0.33541.02090.34110.073*
H13B0.49501.00080.27350.073*
C140.27603 (19)1.09545 (10)0.21772 (9)0.0504 (4)
C150.3254 (2)1.20237 (11)0.21720 (10)0.0593 (4)
H150.42571.22790.25590.071*
C160.2234 (2)1.27060 (11)0.15832 (10)0.0646 (4)
H160.25331.34290.15850.078*
C170.0788 (2)1.23301 (12)0.09972 (11)0.0664 (4)
H170.01161.28000.06050.080*
C180.0316 (2)1.12559 (12)0.09822 (10)0.0633 (4)
H180.06511.10000.05750.076*
C190.13018 (19)1.05687 (11)0.15813 (9)0.0503 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0525 (8)0.0421 (7)0.0492 (8)0.0002 (6)0.0125 (6)0.0018 (5)
C20.0696 (10)0.0523 (9)0.0754 (10)0.0099 (7)0.0297 (8)0.0032 (7)
C30.0780 (11)0.0596 (10)0.0784 (11)0.0031 (8)0.0359 (9)0.0025 (8)
C40.0523 (8)0.0448 (8)0.0520 (8)0.0019 (6)0.0071 (6)0.0016 (6)
C50.0621 (9)0.0534 (8)0.0558 (9)0.0104 (7)0.0059 (7)0.0050 (6)
C60.0655 (9)0.0435 (8)0.0689 (10)0.0052 (7)0.0032 (8)0.0047 (6)
C70.0666 (10)0.0463 (8)0.0804 (11)0.0084 (7)0.0097 (8)0.0019 (7)
C80.0643 (9)0.0521 (9)0.0651 (9)0.0037 (7)0.0201 (7)0.0011 (6)
C90.0492 (7)0.0419 (7)0.0500 (7)0.0012 (6)0.0066 (6)0.0018 (5)
C110.0499 (8)0.0459 (8)0.0604 (9)0.0003 (6)0.0108 (6)0.0019 (6)
C120.0647 (9)0.0485 (8)0.0453 (8)0.0023 (6)0.0088 (6)0.0034 (6)
C130.0748 (10)0.0563 (9)0.0500 (8)0.0017 (7)0.0026 (7)0.0009 (6)
C140.0552 (8)0.0483 (8)0.0482 (8)0.0064 (6)0.0072 (6)0.0015 (6)
C150.0636 (9)0.0530 (9)0.0614 (9)0.0036 (7)0.0054 (7)0.0063 (7)
C160.0771 (11)0.0458 (8)0.0727 (10)0.0044 (8)0.0165 (8)0.0018 (7)
C170.0754 (11)0.0536 (9)0.0701 (10)0.0175 (8)0.0046 (8)0.0073 (7)
C180.0580 (9)0.0618 (9)0.0686 (10)0.0131 (7)0.0047 (7)0.0034 (7)
C190.0499 (8)0.0504 (8)0.0512 (8)0.0047 (6)0.0079 (6)0.0042 (6)
Geometric parameters (Å, º) top
C1—C91.4863 (17)C8—H80.930
C1—C121.5040 (18)C11—C191.4798 (19)
C1—C21.5176 (18)C11—C121.5119 (19)
C1—C111.5321 (19)C11—H110.980
C2—C31.515 (2)C12—C131.5148 (18)
C2—H2A0.970C12—H120.980
C2—H2B0.970C13—C141.5103 (18)
C3—C41.4985 (19)C13—H13A0.970
C3—H3A0.970C13—H13B0.970
C3—H3B0.970C14—C151.3840 (18)
C4—C51.3830 (18)C14—C191.3872 (18)
C4—C91.3871 (18)C15—C161.3818 (19)
C5—C61.3779 (19)C15—H150.930
C5—H50.930C16—C171.368 (2)
C6—C71.379 (2)C16—H160.930
C6—H60.930C17—C181.386 (2)
C7—C81.3768 (19)C17—H170.930
C7—H70.930C18—C191.3835 (19)
C8—C91.3869 (18)C18—H180.930
C9—C1—C12120.80 (11)C19—C11—C12106.19 (11)
C9—C1—C2106.07 (10)C19—C11—C1116.32 (11)
C12—C1—C2123.38 (12)C12—C11—C159.21 (9)
C9—C1—C11118.65 (11)C19—C11—H11119.8
C12—C1—C1159.73 (9)C12—C11—H11119.8
C2—C1—C11122.80 (11)C1—C11—H11119.8
C3—C2—C1107.05 (11)C1—C12—C1161.06 (9)
C3—C2—H2A110.3C1—C12—C13117.94 (11)
C1—C2—H2A110.3C11—C12—C13107.72 (11)
C3—C2—H2B110.3C1—C12—H12118.7
C1—C2—H2B110.3C11—C12—H12118.7
H2A—C2—H2B108.6C13—C12—H12118.7
C4—C3—C2105.50 (12)C14—C13—C12104.59 (11)
C4—C3—H3A110.6C14—C13—H13A110.8
C2—C3—H3A110.6C12—C13—H13A110.8
C4—C3—H3B110.6C14—C13—H13B110.8
C2—C3—H3B110.6C12—C13—H13B110.8
H3A—C3—H3B108.8H13A—C13—H13B108.9
C5—C4—C9120.24 (12)C15—C14—C19120.48 (12)
C5—C4—C3129.02 (13)C15—C14—C13128.71 (13)
C9—C4—C3110.73 (11)C19—C14—C13110.79 (12)
C6—C5—C4119.56 (13)C16—C15—C14118.94 (13)
C6—C5—H5120.2C16—C15—H15120.5
C4—C5—H5120.2C14—C15—H15120.5
C5—C6—C7120.15 (13)C17—C16—C15120.76 (13)
C5—C6—H6119.9C17—C16—H16119.6
C7—C6—H6119.9C15—C16—H16119.6
C8—C7—C6120.80 (13)C16—C17—C18120.64 (14)
C8—C7—H7119.6C16—C17—H17119.7
C6—C7—H7119.6C18—C17—H17119.7
C7—C8—C9119.27 (13)C19—C18—C17119.11 (14)
C7—C8—H8120.4C19—C18—H18120.4
C9—C8—H8120.4C17—C18—H18120.4
C8—C9—C4119.97 (12)C18—C19—C14120.02 (13)
C8—C9—C1129.51 (12)C18—C19—C11129.41 (13)
C4—C9—C1110.51 (11)C14—C19—C11110.54 (11)
C9—C1—C2—C33.82 (17)C9—C1—C12—C11107.36 (13)
C12—C1—C2—C3149.71 (13)C2—C1—C12—C11111.50 (14)
C11—C1—C2—C3137.37 (14)C9—C1—C12—C13156.89 (12)
C1—C2—C3—C43.31 (18)C2—C1—C12—C1315.74 (19)
C2—C3—C4—C5178.70 (14)C11—C1—C12—C1395.76 (13)
C2—C3—C4—C91.57 (18)C19—C11—C12—C1111.37 (11)
C9—C4—C5—C60.4 (2)C19—C11—C12—C131.30 (14)
C3—C4—C5—C6179.87 (14)C1—C11—C12—C13112.67 (12)
C4—C5—C6—C70.4 (2)C1—C12—C13—C1462.88 (16)
C5—C6—C7—C80.6 (2)C11—C12—C13—C143.19 (15)
C6—C7—C8—C90.1 (2)C12—C13—C14—C15177.13 (13)
C7—C8—C9—C40.8 (2)C12—C13—C14—C194.15 (16)
C7—C8—C9—C1179.10 (13)C19—C14—C15—C161.9 (2)
C5—C4—C9—C81.0 (2)C13—C14—C15—C16176.67 (14)
C3—C4—C9—C8179.23 (13)C14—C15—C16—C171.6 (2)
C5—C4—C9—C1178.88 (12)C15—C16—C17—C180.0 (2)
C3—C4—C9—C10.88 (16)C16—C17—C18—C191.3 (2)
C12—C1—C9—C830.2 (2)C17—C18—C19—C141.0 (2)
C2—C1—C9—C8177.17 (14)C17—C18—C19—C11178.91 (13)
C11—C1—C9—C839.7 (2)C15—C14—C19—C180.7 (2)
C12—C1—C9—C4149.92 (12)C13—C14—C19—C18178.19 (12)
C2—C1—C9—C42.96 (15)C15—C14—C19—C11177.66 (11)
C11—C1—C9—C4140.15 (12)C13—C14—C19—C113.50 (15)
C9—C1—C11—C19155.23 (11)C12—C11—C19—C18179.44 (14)
C12—C1—C11—C1993.87 (12)C1—C11—C19—C18116.25 (16)
C2—C1—C11—C1918.57 (19)C12—C11—C19—C141.33 (14)
C9—C1—C11—C12110.90 (13)C1—C11—C19—C1461.87 (15)
C2—C1—C11—C12112.44 (15)

Experimental details

Crystal data
Chemical formulaC18H16
Mr232.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)7.0256 (1), 12.5288 (2), 14.8003 (4)
β (°) 94.3527 (9)
V3)1299.00 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.48 × 0.45 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13022, 2965, 1842
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.140, 1.07
No. of reflections2965
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.16

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1991), SHELXL97, PARST95 (Nardelli, 1995) and PLATON (Spek, 2001).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds