Download citation
Download citation
link to html
Crystallization of [Cd(S-thpc12)](ClO4)2·H2O {S-thpc12 is 1,4,7,10-tetrakis­[(S)-2-hydroxy­propyl]-1,4,7,10-tetra­aza­cyclo­do­decane} in the presence of sodium salicyl­ate (sodium o-hydroxy­benzoate) forms a receptor complex, namely the title compound, [Cd(C20H44N4O4)(C7H5O3)]ClO4·0.5H2O, in which salicyl­ate is hydrogen bonded, via each of its two carboxyl­ate O atoms, to pairs of cis-related pendant hydroxyl groups which, together with the four N atoms, are themselves bound to CdII in an approximately square anti-prismatic arrangement. The diastereoselectivity of the complex-forming process is apparent from the fact that only mol­ecules having Δ helicity, associated with the spiralling of the pendant arms, are formed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801021316/cf6134sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801021316/cf6134Isup2.hkl
Contains datablock I

CCDC reference: 180523

Key indicators

  • Single-crystal X-ray study
  • T = 168 K
  • Mean [sigma](C-C) = 0.010 Å
  • H-atom completeness 99%
  • Disorder in solvent or counterion
  • R factor = 0.037
  • wR factor = 0.061
  • Data-to-parameter ratio = 8.4

checkCIF results

No syntax errors found


Red Alert Alert Level A:
DIFF_020 Alert A _diffrn_standards_interval_count and _diffrn_standards_interval_time are missing. Number of measurements between standards or time (min) between standards.
Amber Alert Alert Level B:
PLAT_111 Alert B ADDSYM detects (pseudo) centre of symmetry ... 95 Perc Fit PLAT_113 Alert B ADDSYM suggests Pseudo/New Spacegroup ........ P21/m PLAT_213 Alert B Atom C1G has ADP max/min Ratio ........... 4.60 oblate
Yellow Alert Alert Level C:
PLAT_162 Alert C Missing or Zero su (esd) on y-coordinate for . CD PLAT_214 Alert C Atom O8 (Anion/Solvent) ADP max/min Ratio 4.50 prolate PLAT_302 Alert C Anion/Solvent Disorder ....................... 8.00 Perc. General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C27 H50 Cd1 Cl1 N4 O11.5 Atom count from the _atom_site data: C27 H49 Cd1 Cl1 N4 O11.5 CELLZ_01 From the CIF: _cell_formula_units_Z 2 From the CIF: _chemical_formula_sum C27 H50 Cd1 Cl1 N4 O11.5 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 54.00 54.00 0.00 H 100.00 98.00 2.00 Cd 2.00 2.00 0.00 Cl 2.00 2.00 0.00 N 8.00 8.00 0.00 O 23.00 23.00 0.00 Difference between formula and atom_site contents detected. WARNING: H atoms missing from atom site list. Is this intentional? REFLT_03 From the CIF: _diffrn_reflns_theta_max 26.41 From the CIF: _reflns_number_total 3539 Count of symmetry unique reflns 3565 Completeness (_total/calc) 99.27% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure
1 Alert Level A = Potentially serious problem
3 Alert Level B = Potential problem
3 Alert Level C = Please check

Comment top

The ability of optically active pendant hydroxyl donor macrocyclic ligands based on cyclen (cyclen is 1,4,7,10-tetraazacyclododecane) to coordinate in a diastereoselective manner has been noted previously (Dhillon et al., 1997, 1998). The structures of such complexes generally approximate to that of a square antiprism (Buøen et al., 1982; Chin et al., 1994; Hancock et al., 1988; Luckay et al., 1995) and as such have an inherent helicity which may be described as Λ or Δ depending on whether the four hydroxyl donors are displaced anticlockwise or clockwise, with respect to the N atom to which each is attached, when the molecule is viewed from the plane of the hydroxyl groups towards the plane of the four N atoms along the pseudo-C4 axis (Dhillon et al., 1995). Recent research has been directed towards attaching aromatic groups to each of the pendant arms in such away that they will juxtapose to form a cavity suitable for the inclusion of smaller guest molecules (Smith et al., 1999, 2002). In the present work, the attached group is the smaller methyl group and it was of interest to determine whether association with potential guest molecules for the larger complexes would occur in the absence of aromatic attachments.

The structure of Δ-[Cd(S-thpc12)(salicylate)]ClO4·0.5H2O, (I) {S-thpc12 is 1,4,7,10-tetrakis[(S)-2-hydroxypropyl]-1,4,7,10-tetraazacyclododecane} (Fig. 1) shows the expected approximately square antiprismatic geometry with Cd–ligand atom bond lengths given in Table 1. The plane of the four O atoms is rotated clockwise by ca 15.0°, with respect to the plane of the four N atoms, giving the complex the Δ helicity. The salicylate anion associates with the complex through hydrogen bonding between pendant arm hydroxyl groups and the carboxylate group; each carboxylate O atom of the salicylate acts as the receptor, and a pair of cis-related hydroxyl groups of the complex act as donors, with detailed geometry given in Table 2 and shown in Fig. 1. The hydroxyl group of the salicylate is internally hydrogen bonded to the adjacent carboxylate O atom and does not interact with the complex. Neither the perchlorate anion nor the water molecule play a direct role in the host–guest interaction. The CdII–carboxylate O distances are 3.918 (3) and 4.131 (3) Å, precluding the possibility of significant ionic interaction between these charged centres. There is a marked similarity in the configuration of hydrogen bonds from the Cd(S-thpc12)2+ species to the guest in (I) and that found in the corresponding 4-nitrophenolate adduct (Davies et al., 2000), although in the latter, the second cis pair of hydroxyl groups is hydrogen bonded to a perchlorate O atom.

The crystal structure of (I) shows that salicylate associates with the complex in the solid state. The electrical conductivity for the receptor complex in DMF solution (86 Ω-1 cm2 mol-1), however, is at the high end of the range normally shown by 1:1 electrolytes in this solvent (65–90 and 130–170 Ω-1 cm2 mol-1) for 1:1 and 1:2 electrolytes, respectively (Geary, 1971), suggesting that the salicylate may be partially dissociated in DMF, and probably more so in solvents of higher dielectric constant.

Experimental top

The title compound was prepared by adding sodium salicylate (sodium o-hydroxybenzoate) (53 mg, 0.33 mmol) to a solution of [Cd(S-thpc12)](ClO4)2·H2O (233 mg, 0.33 mmol) (Davies et al., 2000) in dry methanol (15 ml). The sodium salt dissolved and after 5 min the solution became turbid. After heating under reflux for 2 h, the then clear solution was cooled overnight. Large colourless rod-like crystals of the pure product formed and were collected by filtration. Yield: 171 mg, 67%. 13C NMR (DMSO-d6): δ 172.72 (CO), 161.73, 132.48, 130.53, 119.33, 117.21, 116.10, 61.55, 59.67, 50.32, 47.98, 20.97. Analysis calculated for C27H50CdClN4O11.5: C 42.53, H 6.61, N 7.35%; found: C 42.29, H 6.42, N 7.21%.

Refinement top

The occupancy of the water molecule O atom, O9, refined to 0.522 (12). As this was not significantly different from 0.5 and this fitted the analytical data, the occupancy of O9 was fixed at 0.5 in the final cycles. H atoms of the water molecule were not found. All other H atoms were observed in a difference map. Hydroxyl H-atom positions were obtained from the difference map and others were placed in calculated positions. Checking software shows that the structure has an approximate mirror plane. The existence of a true mirror plane is precluded by the presence of enantiomerically pure chiral cations and the successful refinement of a Flack parameter; Friedel-related reflections were treated as independent.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT (Bruker, 2000) and Xtal3.7 ADDREF SORTRF (Hall et al., 2000); program(s) used to solve structure: SIR97 (Altomare et al., 1994); program(s) used to refine structure: Xtal3.7 CRYLSQ; molecular graphics: Xtal3.7; software used to prepare material for publication: Xtal3.7 BONDLA CIFIO.

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atom labels. Hydrogen bonds are shown as dashed lines. Displacement ellipsoids are at the 50% probability level. H atoms and the perchlorate ion are not shown. O9 is the water molecule O atom.
(I) top
Crystal data top
[Cd(C20H44N4O4)(C7H5O3)]ClO4·0.5H2OZ = 2
Mr = 762.57Dx = 1.531 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: p 2y1Cell parameters from 6178 reflections
a = 9.608 (2) Åθ = 2.8–26.4°
b = 12.423 (3) ŵ = 0.80 mm1
c = 14.549 (4) ÅT = 168 K
β = 107.47 (1)°Plate, colourless
V = 1656.5 (7) Å30.35 × 0.28 × 0.07 mm
Data collection top
Bruker P4
diffractometer
3421 reflections with F2 > 0
ω scansRint = 0.032
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 1997)
θmax = 26.4°
Tmin = 0.769, Tmax = 0.945h = 1111
6081 measured reflectionsk = 1513
3539 independent reflectionsl = 1818
Refinement top
Refinement on F2H-atom parameters not refined
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.01Fo2)2]1/2
wR(F2) = 0.061(Δ/σ)max = 0.001
S = 1.42Δρmax = 0.80 e Å3
3421 reflectionsΔρmin = 0.90 e Å3
406 parametersAbsolute structure: Flack (1983), 2542 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (3)
Secondary atom site location: structure-invariant direct methods
Crystal data top
[Cd(C20H44N4O4)(C7H5O3)]ClO4·0.5H2OV = 1656.5 (7) Å3
Mr = 762.57Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.608 (2) ŵ = 0.80 mm1
b = 12.423 (3) ÅT = 168 K
c = 14.549 (4) Å0.35 × 0.28 × 0.07 mm
β = 107.47 (1)°
Data collection top
Bruker P4
diffractometer
3539 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 1997)
3421 reflections with F2 > 0
Tmin = 0.769, Tmax = 0.945Rint = 0.032
6081 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters not refined
wR(F2) = 0.061Δρmax = 0.80 e Å3
S = 1.42Δρmin = 0.90 e Å3
3421 reflectionsAbsolute structure: Flack (1983), 2542 Friedel pairs
406 parametersAbsolute structure parameter: 0.04 (3)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd0.31271 (3)0.179340.75191 (2)0.02168 (18)
O10.3844 (4)0.3023 (4)0.8905 (3)0.033 (3)
O20.5567 (4)0.2704 (4)0.7581 (3)0.033 (3)
O30.5098 (4)0.0488 (4)0.7903 (3)0.030 (2)
O40.3302 (5)0.0894 (4)0.9086 (3)0.031 (3)
N10.1041 (8)0.2955 (7)0.7510 (6)0.025 (4)
N20.2853 (7)0.3092 (7)0.6188 (5)0.024 (4)
N30.2957 (8)0.0693 (7)0.6101 (6)0.031 (4)
N40.1078 (8)0.0523 (7)0.7406 (5)0.027 (4)
C10.0563 (7)0.3525 (7)0.6581 (5)0.030 (4)
C110.1483 (9)0.3726 (8)0.8334 (7)0.032 (5)
C210.4251 (10)0.3624 (9)0.6209 (8)0.031 (5)
C310.4127 (11)0.0148 (10)0.6300 (8)0.037 (5)
C410.1112 (9)0.0010 (9)0.8332 (7)0.031 (5)
C20.1810 (7)0.3971 (7)0.6261 (5)0.033 (4)
C120.2565 (8)0.3241 (8)0.9217 (6)0.036 (5)
C220.5265 (8)0.3773 (7)0.7215 (6)0.031 (4)
C320.5505 (8)0.0233 (7)0.7038 (6)0.030 (4)
C420.2650 (8)0.0135 (7)0.9014 (5)0.026 (4)
C30.2266 (6)0.2484 (6)0.5293 (4)0.033 (4)
C130.2952 (11)0.4016 (11)1.0038 (8)0.056 (6)
C230.6604 (11)0.4408 (10)0.7189 (9)0.044 (6)
C330.6645 (10)0.0645 (10)0.7266 (9)0.039 (6)
C430.2600 (10)0.0509 (9)1.0019 (7)0.038 (5)
C40.3060 (6)0.1413 (5)0.5313 (4)0.032 (4)
C50.1522 (7)0.0143 (7)0.5818 (5)0.034 (4)
C60.1141 (8)0.0324 (7)0.6681 (5)0.031 (4)
C70.0239 (6)0.1193 (6)0.7064 (5)0.029 (3)
C80.0134 (6)0.2223 (6)0.7628 (4)0.032 (4)
O1g0.9831 (3)0.1797 (10)0.9882 (2)0.052 (2)
O2g0.7098 (3)0.1742 (9)0.9302 (2)0.036 (2)
O3g0.5798 (3)0.1831 (9)1.0336 (2)0.043 (2)
C1g0.8397 (4)0.1780 (11)1.0977 (3)0.027 (2)
C2g0.9752 (5)0.1766 (13)1.0799 (3)0.031 (3)
C3g1.1035 (5)0.1814 (13)1.1553 (4)0.040 (3)
C4g1.0986 (5)0.1825 (13)1.2485 (3)0.041 (3)
C5g0.9657 (5)0.1811 (12)1.2678 (3)0.041 (3)
C6g0.8379 (5)0.1789 (13)1.1937 (3)0.035 (3)
C7g0.6999 (5)0.1767 (13)1.0156 (3)0.031 (3)
Cl0.69442 (13)0.1843 (4)0.46382 (10)0.0416 (8)
O50.6783 (11)0.2703 (8)0.5190 (8)0.132 (8)
O60.8326 (5)0.1930 (13)0.4543 (4)0.124 (5)
O70.6912 (8)0.0872 (7)0.5192 (5)0.070 (4)
O80.5926 (8)0.1802 (14)0.3788 (5)0.206 (7)
O90.4565 (10)0.154 (2)1.1829 (7)0.104 (12).50000
H1a0.004360.412340.664030.03900*
H1b0.001610.305390.610310.03900*
H11a0.063690.394310.849570.04300*
H11b0.191040.434960.813740.04300*
H21a0.404620.432260.591230.03700*
H21b0.473860.320490.586010.03700*
H31a0.432800.029380.571720.04600*
H31b0.377820.076290.653380.04600*
H41a0.068500.069290.819100.03700*
H41b0.056700.041970.864610.03700*
H2a0.142660.430750.565220.04100*
H2b0.232250.449320.672040.04100*
H120.219370.263200.943450.04100*
H220.486600.420450.762290.03800*
H320.591580.084710.681220.03600*
H420.318830.066330.879160.03600*
H3a0.236510.291130.476850.04100*
H3b0.126370.235020.520300.04100*
H13a0.363350.370951.058700.08600*
H13b0.209290.421931.020670.08600*
H13c0.336650.466600.986940.08600*
H23a0.722980.449730.781470.06100*
H23b0.631010.508570.689140.06100*
H23c0.708590.401100.680820.06100*
H33a0.751700.039650.774010.05900*
H33b0.687890.084820.670440.05900*
H33c0.628830.125500.752430.05900*
H43a0.355690.057721.043310.05900*
H43b0.209240.116360.995520.05900*
H43c0.209150.003091.026610.05900*
H4a0.264580.106700.471290.04200*
H4b0.406130.156770.539250.04200*
H5a0.154280.041530.538330.04300*
H5b0.078840.065800.550060.04300*
H6a0.022160.065640.646290.04100*
H6b0.186870.082450.698880.04100*
H7a0.105320.079960.711280.03800*
H7b0.037560.137560.640280.03800*
H8a0.104300.259900.741400.03800*
H8b0.007370.206020.829150.03800*
H3g1.194820.185381.142590.05200*
H4g1.186740.185331.300130.05000*
H5g0.963220.183291.332840.05000*
H6g0.747040.176721.207400.04300*
H1o0.455360.269910.939480.04900*
H2o0.598700.272990.824360.05100*
H4o0.433700.097550.951400.04500*
H3o0.600540.074190.837490.04400*
H1g0.884750.181000.954530.07600*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.02139 (14)0.0245 (3)0.01937 (17)0.0002 (5)0.00642 (11)0.0006 (5)
O10.026 (2)0.038 (4)0.033 (3)0.001 (2)0.006 (2)0.003 (2)
O20.040 (3)0.027 (4)0.026 (3)0.002 (2)0.000 (2)0.001 (3)
O30.030 (2)0.037 (4)0.022 (2)0.005 (2)0.0057 (18)0.004 (3)
O40.028 (2)0.034 (4)0.029 (3)0.008 (2)0.006 (2)0.001 (3)
N10.030 (4)0.022 (5)0.026 (4)0.004 (3)0.012 (3)0.004 (4)
N20.022 (3)0.028 (5)0.020 (4)0.001 (3)0.003 (3)0.003 (4)
N30.033 (4)0.036 (6)0.026 (4)0.004 (3)0.012 (3)0.004 (4)
N40.025 (4)0.032 (6)0.021 (4)0.003 (3)0.002 (3)0.001 (4)
C10.029 (3)0.030 (6)0.033 (4)0.005 (3)0.011 (3)0.005 (4)
C110.037 (5)0.021 (6)0.039 (5)0.007 (4)0.015 (4)0.000 (4)
C210.028 (4)0.027 (7)0.040 (6)0.004 (4)0.015 (4)0.004 (5)
C310.035 (5)0.043 (8)0.031 (6)0.006 (5)0.005 (4)0.016 (5)
C410.028 (4)0.033 (6)0.032 (5)0.000 (4)0.010 (3)0.003 (4)
C20.029 (3)0.033 (6)0.038 (5)0.010 (3)0.013 (3)0.015 (4)
C120.034 (4)0.044 (7)0.031 (5)0.005 (4)0.012 (3)0.003 (5)
C220.029 (3)0.025 (6)0.039 (5)0.002 (3)0.011 (3)0.000 (4)
C320.036 (4)0.028 (6)0.032 (4)0.004 (4)0.018 (3)0.000 (5)
C420.036 (4)0.018 (6)0.022 (4)0.000 (3)0.006 (3)0.000 (4)
C30.030 (3)0.042 (5)0.028 (4)0.002 (3)0.012 (3)0.004 (4)
C130.073 (6)0.043 (8)0.053 (7)0.004 (5)0.020 (5)0.025 (6)
C230.039 (5)0.051 (9)0.036 (6)0.008 (5)0.005 (4)0.003 (6)
C330.032 (5)0.034 (7)0.057 (7)0.002 (4)0.021 (5)0.001 (6)
C430.049 (5)0.033 (7)0.030 (5)0.001 (4)0.006 (4)0.010 (4)
C40.038 (3)0.038 (7)0.020 (3)0.000 (3)0.010 (3)0.003 (3)
C50.038 (4)0.032 (6)0.034 (4)0.009 (3)0.013 (3)0.010 (4)
C60.037 (4)0.025 (6)0.030 (4)0.004 (3)0.006 (3)0.008 (4)
C70.022 (3)0.036 (5)0.030 (4)0.008 (3)0.007 (3)0.002 (4)
C80.022 (3)0.046 (6)0.029 (4)0.002 (3)0.010 (3)0.006 (4)
O1g0.0411 (18)0.092 (4)0.0268 (19)0.015 (6)0.0150 (15)0.013 (6)
O2g0.0419 (17)0.040 (3)0.0211 (18)0.013 (4)0.0018 (14)0.006 (5)
O3g0.0319 (16)0.057 (3)0.040 (2)0.008 (5)0.0088 (15)0.003 (6)
C1g0.035 (2)0.022 (4)0.022 (3)0.005 (6)0.0050 (19)0.020 (7)
C2g0.036 (2)0.037 (4)0.019 (2)0.008 (7)0.007 (2)0.006 (8)
C3g0.034 (2)0.043 (4)0.042 (3)0.003 (8)0.010 (2)0.006 (10)
C4g0.043 (3)0.046 (4)0.026 (3)0.000 (8)0.002 (2)0.018 (8)
C5g0.061 (3)0.040 (4)0.019 (3)0.010 (8)0.008 (2)0.018 (8)
C6g0.046 (3)0.035 (4)0.028 (3)0.004 (8)0.019 (2)0.012 (9)
C7g0.038 (2)0.025 (4)0.028 (3)0.002 (7)0.006 (2)0.005 (8)
Cl0.0404 (6)0.0455 (12)0.0421 (8)0.002 (2)0.0171 (6)0.002 (2)
O50.195 (9)0.064 (8)0.203 (10)0.046 (7)0.158 (8)0.003 (7)
O60.083 (3)0.218 (10)0.090 (4)0.071 (7)0.055 (3)0.003 (8)
O70.085 (4)0.041 (6)0.054 (4)0.009 (4)0.023 (3)0.019 (4)
O80.167 (6)0.254 (11)0.105 (5)0.139 (10)0.098 (5)0.112 (9)
O90.055 (5)0.20 (3)0.063 (6)0.044 (11)0.024 (5)0.029 (12)
Geometric parameters (Å, º) top
Cd—O12.457 (5)C32—H320.961
Cd—O22.580 (5)C42—C431.548 (14)
Cd—O32.428 (4)C42—H420.951
Cd—O42.499 (5)C3—C41.530 (10)
Cd—N12.467 (8)C3—H3a0.958
Cd—N22.473 (8)C3—H3b0.947
Cd—N32.440 (9)C13—H13a0.947
Cd—N42.490 (8)C13—H13b0.963
O1—C121.458 (10)C13—H13c0.965
O1—H1o0.918C23—H23a0.935
O2—C221.428 (10)C23—H23b0.950
O2—H2o0.927C23—H23c0.958
O3—C321.459 (10)C33—H33a0.962
O3—H3o0.986C33—H33b0.945
O4—C421.413 (10)C33—H33c0.954
O4—H4o1.007C43—H43a0.940
N1—C11.472 (11)C43—H43b0.939
N1—C111.492 (13)C43—H43c0.961
N1—C81.499 (11)C4—H4a0.946
N2—C211.489 (13)C4—H4b0.954
N2—C21.508 (11)C5—C61.525 (12)
N2—C31.463 (10)C5—H5a0.942
N3—C311.498 (14)C5—H5b0.961
N3—C41.481 (11)C6—H6a0.940
N3—C51.482 (10)C6—H6b0.942
N4—C411.493 (13)C7—C81.507 (10)
N4—C61.503 (12)C7—H7a0.943
N4—C71.471 (10)C7—H7b0.958
C1—C21.514 (11)C8—H8a0.956
C1—H1a0.965C8—H8b0.948
C1—H1b0.940O1g—C2g1.359 (6)
C11—C121.514 (12)O1g—H1g0.925
C11—H11a0.951O2g—C7g1.274 (6)
C11—H11b0.959O3g—C7g1.260 (6)
C21—C221.507 (12)C1g—C2g1.402 (7)
C21—H21a0.962C1g—C6g1.402 (7)
C21—H21b0.944C1g—C7g1.506 (5)
C31—C321.509 (12)C2g—C3g1.384 (5)
C31—H31a0.941C3g—C4g1.371 (7)
C31—H31b0.938C3g—H3g0.951
C41—C421.521 (10)C4g—C5g1.387 (8)
C41—H41a0.938C4g—H4g0.949
C41—H41b0.955C5g—C6g1.370 (6)
C2—H2a0.948C5g—H5g0.953
C2—H2b0.955C6g—H6g0.953
C12—C131.493 (15)Cl—O51.373 (12)
C12—H120.931Cl—O61.380 (6)
C22—C231.519 (14)Cl—O71.456 (9)
C22—H220.960Cl—O81.328 (6)
C32—C331.511 (14)
O1—Cd—O270.76 (16)O2—C22—C21104.4 (7)
O1—Cd—O3102.68 (14)O2—C22—C23114.4 (7)
O1—Cd—O466.66 (16)O2—C22—H22111.3
O1—Cd—N170.6 (2)C21—C22—C23110.1 (8)
O1—Cd—N2100.1 (2)C21—C22—H22114.1
O1—Cd—N3166.8 (2)C23—C22—H22103.0
O1—Cd—N4118.0 (2)O3—C32—C31106.1 (7)
O2—Cd—O369.33 (16)O3—C32—C33109.4 (7)
O2—Cd—O4110.64 (14)O3—C32—H32111.5
O2—Cd—N1118.1 (2)C31—C32—C33110.6 (8)
O2—Cd—N267.88 (18)C31—C32—H32111.6
O2—Cd—N396.0 (2)C33—C32—H32107.7
O2—Cd—N4166.5 (2)O4—C42—C41106.2 (6)
O3—Cd—O469.98 (16)O4—C42—C43109.9 (6)
O3—Cd—N1165.6 (2)O4—C42—H42112.0
O3—Cd—N2120.5 (2)C41—C42—C43110.4 (7)
O3—Cd—N370.7 (2)C41—C42—H42111.6
O3—Cd—N498.0 (2)C43—C42—H42106.8
O4—Cd—N195.6 (2)N2—C3—C4112.0 (5)
O4—Cd—N2165.5 (2)N2—C3—H3a108.6
O4—Cd—N3119.4 (2)N2—C3—H3b108.6
O4—Cd—N467.2 (2)C4—C3—H3a109.1
N1—Cd—N273.7 (3)C4—C3—H3b109.3
N1—Cd—N3118.4 (2)H3a—C3—H3b109.1
N1—Cd—N475.3 (3)C12—C13—H13a111.0
N2—Cd—N374.9 (3)C12—C13—H13b110.3
N2—Cd—N4117.7 (2)C12—C13—H13c111.0
N3—Cd—N474.8 (3)H13a—C13—H13b108.7
Cd—O1—C12108.4 (4)H13a—C13—H13c108.5
Cd—O1—H1o108.9H13b—C13—H13c107.2
C12—O1—H1o109.8C22—C23—H23a109.8
Cd—O2—C22108.3 (4)C22—C23—H23b109.5
Cd—O2—H2o99.2C22—C23—H23c107.9
C22—O2—H2o109.4H23a—C23—H23b110.7
Cd—O3—C32109.8 (4)H23a—C23—H23c110.1
Cd—O3—H3o114.3H23b—C23—H23c108.8
C32—O3—H3o105.1C32—C33—H33a110.1
Cd—O4—C42115.5 (4)C32—C33—H33b110.4
Cd—O4—H4o107.6C32—C33—H33c109.8
C42—O4—H4o118.0H33a—C33—H33b108.8
Cd—N1—C1108.4 (5)H33a—C33—H33c108.1
Cd—N1—C11109.6 (5)H33b—C33—H33c109.6
Cd—N1—C8106.4 (5)C42—C43—H43a109.3
C1—N1—C11111.3 (8)C42—C43—H43b109.3
C1—N1—C8111.0 (5)C42—C43—H43c107.9
C11—N1—C8109.9 (7)H43a—C43—H43b111.3
Cd—N2—C21113.0 (5)H43a—C43—H43c109.4
Cd—N2—C2109.5 (5)H43b—C43—H43c109.5
Cd—N2—C3106.4 (5)N3—C4—C3113.0 (6)
C21—N2—C2106.9 (7)N3—C4—H4a109.4
C21—N2—C3110.6 (7)N3—C4—H4b109.1
C2—N2—C3110.4 (5)C3—C4—H4a108.0
Cd—N3—C31111.8 (5)C3—C4—H4b107.8
Cd—N3—C4108.2 (5)H4a—C4—H4b109.5
Cd—N3—C5108.3 (6)N3—C5—C6112.3 (6)
C31—N3—C4110.5 (8)N3—C5—H5a108.7
C31—N3—C5108.3 (8)N3—C5—H5b108.3
C4—N3—C5109.6 (6)C6—C5—H5a109.3
Cd—N4—C41114.8 (5)C6—C5—H5b109.0
Cd—N4—C6107.0 (5)H5a—C5—H5b109.2
Cd—N4—C7104.3 (5)N4—C6—C5112.4 (7)
C41—N4—C6109.1 (7)N4—C6—H6a108.2
C41—N4—C7109.8 (7)N4—C6—H6b108.0
C6—N4—C7111.8 (6)C5—C6—H6a108.8
N1—C1—C2113.7 (5)C5—C6—H6b108.3
N1—C1—H1a108.6H6a—C6—H6b111.1
N1—C1—H1b109.3N4—C7—C8112.7 (5)
C2—C1—H1a107.5N4—C7—H7a109.3
C2—C1—H1b108.6N4—C7—H7b108.5
H1a—C1—H1b109.1C8—C7—H7a108.7
N1—C11—C12112.5 (8)C8—C7—H7b108.1
N1—C11—H11a108.8H7a—C7—H7b109.4
N1—C11—H11b108.9N1—C8—C7112.5 (6)
C12—C11—H11a108.8N1—C8—H8a108.2
C12—C11—H11b109.2N1—C8—H8b108.1
H11a—C11—H11b108.6C7—C8—H8a109.4
N2—C21—C22113.0 (9)C7—C8—H8b109.4
N2—C21—H21a109.3H8a—C8—H8b109.2
N2—C21—H21b109.5C2g—O1g—H1g99.8
C22—C21—H21a108.1C2g—C1g—C6g118.3 (4)
C22—C21—H21b108.0C2g—C1g—C7g120.7 (4)
H21a—C21—H21b108.9C6g—C1g—C7g121.0 (4)
N3—C31—C32111.4 (9)O1g—C2g—C1g120.7 (3)
N3—C31—H31a107.8O1g—C2g—C3g118.5 (4)
N3—C31—H31b108.0C1g—C2g—C3g120.6 (4)
C32—C31—H31a109.1C2g—C3g—C4g119.8 (5)
C32—C31—H31b109.3C2g—C3g—H3g120.1
H31a—C31—H31b111.3C4g—C3g—H3g120.0
N4—C41—C42112.8 (8)C3g—C4g—C5g120.5 (4)
N4—C41—H41a108.3C3g—C4g—H4g119.7
N4—C41—H41b108.5C5g—C4g—H4g119.8
C42—C41—H41a109.0C4g—C5g—C6g120.1 (5)
C42—C41—H41b108.0C4g—C5g—H5g119.9
H41a—C41—H41b110.1C6g—C5g—H5g119.9
N2—C2—C1111.1 (7)C1g—C6g—C5g120.6 (5)
N2—C2—H2a109.5C1g—C6g—H6g119.6
N2—C2—H2b109.1C5g—C6g—H6g119.8
C1—C2—H2a109.1O2g—C7g—O3g123.0 (4)
C1—C2—H2b108.8O2g—C7g—C1g117.6 (4)
H2a—C2—H2b109.2O3g—C7g—C1g119.3 (4)
O1—C12—C11103.8 (7)O5—Cl—O6106.2 (8)
O1—C12—C13109.8 (7)O5—Cl—O7107.3 (6)
O1—C12—H12113.6O5—Cl—O8113.2 (8)
C11—C12—C13111.4 (8)O6—Cl—O7107.5 (7)
C11—C12—H12112.1O6—Cl—O8111.8 (4)
C13—C12—H12106.3O7—Cl—O8110.6 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O3g0.921.872.776 (8)170
O2—H2o···O2g0.932.012.766 (7)138
O3—H3o···O2g0.991.902.814 (7)153
O4—H4o···O3g1.011.882.791 (7)150
O1g—H1g···O2g0.931.612.507 (4)161
O9···O3g2.792 (12)
O9···O8i2.774 (12)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C20H44N4O4)(C7H5O3)]ClO4·0.5H2O
Mr762.57
Crystal system, space groupMonoclinic, P21
Temperature (K)168
a, b, c (Å)9.608 (2), 12.423 (3), 14.549 (4)
β (°) 107.47 (1)
V3)1656.5 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.35 × 0.28 × 0.07
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Bruker, 1997)
Tmin, Tmax0.769, 0.945
No. of measured, independent and
observed (F2 > 0) reflections
6081, 3539, 3421
Rint0.032
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.061, 1.42
No. of reflections3421
No. of parameters406
No. of restraints?
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.80, 0.90
Absolute structureFlack (1983), 2542 Friedel pairs
Absolute structure parameter0.04 (3)

Computer programs: SMART (Bruker, 1999), SMART, SAINT (Bruker, 2000) and Xtal3.7 ADDREF SORTRF (Hall et al., 2000), SIR97 (Altomare et al., 1994), Xtal3.7 CRYLSQ, Xtal3.7 BONDLA CIFIO.

Selected bond lengths (Å) top
Cd—O12.457 (5)Cd—N12.467 (8)
Cd—O22.580 (5)Cd—N22.473 (8)
Cd—O32.428 (4)Cd—N32.440 (9)
Cd—O42.499 (5)Cd—N42.490 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O3g0.921.872.776 (8)170.2
O2—H2o···O2g0.932.012.766 (7)137.9
O3—H3o···O2g0.991.902.814 (7)152.6
O4—H4o···O3g1.011.882.791 (7)149.5
O1g—H1g···O2g0.931.612.507 (4)161.3
O9···O3g..2.792 (12).
O9···O8i..2.774 (12).
Symmetry code: (i) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds