Download citation
Download citation
link to html
The title compound, C16H11N3O3, (I), exists in crystals as the pure hydrazone tautomer. Molecules form stacks stretched along [100]. AM1 calculations of the crystal electrostatic potential show that the crystal environment causes only a 24% increase in the molecular dipole moment of (I).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680101621X/cf6106sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680101621X/cf6106Isup2.hkl
Contains datablock I

CCDC reference: 176003

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.045
  • wR factor = 0.108
  • Data-to-parameter ratio = 12.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_353 Alert C Long N-H Bond (0.87A) N(1) - H(1) = 1.05 Ang.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Azo derivatives of α- and β-naphthols form a family of widely used dyes and pigments, but structure determinations the derivatives of α-naphthol have not been reported up to now.

The title compound, (I), is known to exist in solutions as the hydrazone tautomer (Koller & Zollinger, 1970; Korewa & Urbańska, 1972). The density functional theory (DFT) calculations for the isolated molecule showed that the hydrazone form is 28 kJ mol-1 more stable than the azo form.

The molecule of (I) is close to being planar; its structure is shown in Fig. 1 and selected geometrical parameters are given in Table 1. The bond dimensions in the keto–hydrazone O1—C1—C2—C3—C4—N2—N1 chain indicate alternation of single and double bonds, thus only a moderate charge transfer from the hydrazone moiety to the keto group takes place. Neighbouring molecules within the stack are related by inversion centres, with interplanar distances of 3.347 (1) and 3.411 (1) Å. The nitro group forms an intramolecular hydrogen bond with the hydrazone H atom, thus precluding the formation of intermolecular hydrogen bonds. As shown in Fig. 2, the molecules are gathered together by C—H···O contacts to form flat sheets.

AM1 (Dewar et al., 1985) calculations predict that under the effect of the crystal electrostatic potential (Yatsenko & Paseshnichenko, 2000) the molecular dipole moment of (I) increases from 5.64 D for an isolated molecule to 6.99 D for a molecule within the crystal.

Experimental top

Compound (I) was prepared according to the established procedure of Elbs et al. (1924). Single crystals were grown by slow evaporation of a chloroform solution of (I). The DFT calculations were performed using the program provided by Dr D. N. Laikov (1997). Details of calculations employing the crystal electrostatic potentials have been reported elsewhere (Yatenko & Paseshnichenko, 2000).

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: PROFIT (Streltsov & Zavodnik, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2001).

Figures top
[Figure 1] Fig. 1. A view of (I) with 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. C—H···O Bonded sheets in the structure of (I).
4-[(2-nitrophenyl)hydrazono]-4H-naphthalen-1-one top
Crystal data top
C16H11N3O3Dx = 1.479 Mg m3
Mr = 293.28Melting point: 517 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.328 (2) ÅCell parameters from 22 reflections
b = 16.366 (4) Åθ = 14.7–16.3°
c = 11.131 (3) ŵ = 0.11 mm1
β = 99.33 (2)°T = 293 K
V = 1317.3 (6) Å3Needle, dark red
Z = 40.55 × 0.16 × 0.09 mm
F(000) = 608
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.018
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 2.2°
Graphite monochromatorh = 99
ω scansk = 021
3173 measured reflectionsl = 014
3025 independent reflections3 standard reflections every 120 min
2041 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045All H-atom parameters refined
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.04P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.31(Δ/σ)max = 0.006
3025 reflectionsΔρmax = 0.20 e Å3
244 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0027 (8)
Crystal data top
C16H11N3O3V = 1317.3 (6) Å3
Mr = 293.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.328 (2) ŵ = 0.11 mm1
b = 16.366 (4) ÅT = 293 K
c = 11.131 (3) Å0.55 × 0.16 × 0.09 mm
β = 99.33 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.018
3173 measured reflections3 standard reflections every 120 min
3025 independent reflections intensity decay: none
2041 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.108All H-atom parameters refined
S = 1.31Δρmax = 0.20 e Å3
3025 reflectionsΔρmin = 0.16 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.60667 (17)0.57864 (7)0.93712 (9)0.0572 (4)
O20.23492 (18)0.27875 (7)0.44880 (11)0.0656 (4)
O30.1408 (2)0.20724 (7)0.28875 (13)0.0759 (4)
N10.21431 (17)0.43700 (7)0.44329 (10)0.0401 (3)
N20.23925 (16)0.51405 (7)0.48507 (10)0.0380 (3)
N30.15886 (19)0.27320 (8)0.34107 (13)0.0498 (4)
C10.5250 (2)0.56377 (9)0.83466 (13)0.0386 (4)
C20.5072 (2)0.48104 (9)0.78856 (14)0.0425 (4)
C30.4199 (2)0.46339 (9)0.67641 (14)0.0426 (4)
C40.33440 (19)0.52586 (8)0.59335 (12)0.0336 (3)
C50.2814 (2)0.67590 (9)0.55850 (14)0.0445 (4)
C60.2949 (2)0.75520 (10)0.59902 (16)0.0517 (4)
C70.3810 (2)0.77243 (9)0.71679 (16)0.0523 (4)
C80.4546 (2)0.71045 (10)0.79169 (15)0.0469 (4)
C90.4430 (2)0.62964 (9)0.75147 (13)0.0366 (3)
C100.35333 (19)0.61141 (8)0.63376 (12)0.0352 (3)
C110.11540 (19)0.42454 (8)0.32735 (12)0.0356 (3)
C120.0890 (2)0.34606 (9)0.27546 (13)0.0390 (4)
C130.0090 (2)0.33540 (11)0.15852 (15)0.0478 (4)
C140.0833 (2)0.40066 (11)0.09289 (15)0.0523 (5)
C150.0601 (2)0.47837 (11)0.14233 (15)0.0491 (4)
C160.0393 (2)0.49030 (9)0.25649 (14)0.0416 (4)
H20.555 (2)0.4411 (10)0.8370 (14)0.053 (5)*
H30.419 (2)0.4083 (11)0.6500 (16)0.069 (5)*
H50.226 (2)0.6630 (10)0.4827 (15)0.051 (5)*
H60.241 (2)0.7953 (11)0.5459 (14)0.061 (5)*
H70.383 (2)0.8270 (10)0.7417 (13)0.055 (5)*
H80.508 (2)0.7184 (11)0.8724 (16)0.062 (5)*
H130.022 (3)0.2800 (12)0.1302 (16)0.072 (6)*
H140.153 (2)0.3925 (10)0.0167 (15)0.060 (5)*
H150.114 (2)0.5221 (10)0.0985 (14)0.055 (5)*
H160.054 (2)0.5419 (10)0.2910 (13)0.052 (5)*
H10.257 (2)0.3828 (10)0.4895 (13)0.047 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0728 (8)0.0503 (7)0.0403 (6)0.0017 (6)0.0153 (6)0.0015 (5)
O20.0868 (10)0.0455 (7)0.0558 (8)0.0033 (6)0.0150 (7)0.0075 (6)
O30.0982 (11)0.0346 (6)0.0878 (10)0.0061 (7)0.0059 (8)0.0118 (6)
N10.0484 (8)0.0330 (6)0.0355 (7)0.0011 (6)0.0037 (6)0.0011 (5)
N20.0417 (7)0.0341 (6)0.0367 (7)0.0005 (5)0.0020 (6)0.0021 (5)
N30.0534 (8)0.0344 (7)0.0595 (9)0.0051 (6)0.0027 (7)0.0012 (6)
C10.0382 (8)0.0396 (8)0.0358 (8)0.0017 (7)0.0007 (6)0.0008 (6)
C20.0485 (10)0.0361 (8)0.0392 (9)0.0059 (7)0.0042 (7)0.0071 (7)
C30.0488 (10)0.0332 (7)0.0436 (9)0.0025 (7)0.0004 (7)0.0009 (7)
C40.0345 (8)0.0338 (7)0.0314 (7)0.0002 (6)0.0017 (6)0.0000 (6)
C50.0506 (10)0.0373 (8)0.0409 (9)0.0003 (7)0.0064 (8)0.0043 (7)
C60.0576 (11)0.0356 (8)0.0572 (10)0.0016 (8)0.0048 (8)0.0092 (8)
C70.0586 (11)0.0305 (8)0.0637 (11)0.0027 (8)0.0019 (9)0.0037 (8)
C80.0507 (10)0.0406 (8)0.0454 (9)0.0040 (7)0.0042 (8)0.0055 (7)
C90.0349 (8)0.0368 (7)0.0365 (7)0.0022 (6)0.0006 (6)0.0005 (6)
C100.0337 (8)0.0351 (7)0.0361 (8)0.0004 (6)0.0030 (6)0.0028 (6)
C110.0334 (8)0.0387 (8)0.0333 (8)0.0018 (6)0.0015 (6)0.0004 (6)
C120.0365 (8)0.0387 (8)0.0409 (8)0.0037 (6)0.0036 (6)0.0011 (6)
C130.0471 (10)0.0511 (10)0.0445 (9)0.0116 (8)0.0049 (7)0.0095 (8)
C140.0491 (10)0.0681 (12)0.0359 (9)0.0104 (9)0.0045 (7)0.0030 (8)
C150.0465 (10)0.0566 (10)0.0417 (9)0.0030 (8)0.0002 (8)0.0102 (8)
C160.0449 (9)0.0376 (8)0.0405 (9)0.0026 (7)0.0014 (7)0.0002 (7)
Geometric parameters (Å, º) top
O1—C11.2235 (17)C6—C71.389 (2)
O2—N31.2410 (16)C6—H60.929 (17)
O3—N31.2235 (16)C7—C81.367 (2)
N1—N21.3462 (17)C7—H70.935 (16)
N1—C111.3889 (17)C8—C91.394 (2)
N1—H11.047 (15)C8—H80.929 (17)
N2—C41.3053 (17)C9—C101.3995 (19)
N3—C121.4479 (19)C11—C161.396 (2)
C1—C21.446 (2)C11—C121.409 (2)
C1—C91.483 (2)C12—C131.392 (2)
C2—C31.339 (2)C13—C141.357 (2)
C2—H20.884 (16)C13—H130.960 (19)
C3—C41.451 (2)C14—C151.385 (2)
C3—H30.949 (18)C14—H140.926 (17)
C4—C101.4703 (19)C15—C161.372 (2)
C5—C61.372 (2)C15—H150.918 (16)
C5—C101.397 (2)C16—H160.927 (16)
C5—H50.900 (16)
N2—N1—C11118.67 (12)C7—C8—C9120.70 (15)
N2—N1—H1127.6 (8)C7—C8—H8123.3 (11)
C11—N1—H1113.7 (8)C9—C8—H8115.9 (11)
C4—N2—N1118.69 (12)C8—C9—C10119.84 (14)
O3—N3—O2121.44 (14)C8—C9—C1119.45 (13)
O3—N3—C12118.97 (14)C10—C9—C1120.71 (13)
O2—N3—C12119.59 (13)C5—C10—C9118.35 (13)
O1—C1—C2121.28 (14)C5—C10—C4121.90 (13)
O1—C1—C9121.65 (14)C9—C10—C4119.75 (12)
C2—C1—C9117.06 (13)N1—C11—C16120.81 (13)
C3—C2—C1122.32 (14)N1—C11—C12122.09 (13)
C3—C2—H2119.5 (10)C16—C11—C12117.10 (13)
C1—C2—H2118.2 (10)C13—C12—C11120.90 (14)
C2—C3—C4122.28 (14)C13—C12—N3117.07 (14)
C2—C3—H3118.1 (11)C11—C12—N3122.02 (13)
C4—C3—H3119.5 (11)C14—C13—C12120.39 (16)
N2—C4—C3126.51 (13)C14—C13—H13123.9 (11)
N2—C4—C10115.68 (12)C12—C13—H13115.7 (11)
C3—C4—C10117.81 (12)C13—C14—C15119.73 (15)
C6—C5—C10121.16 (15)C13—C14—H14119.6 (11)
C6—C5—H5121.9 (11)C15—C14—H14120.6 (11)
C10—C5—H5117.0 (11)C16—C15—C14120.73 (16)
C5—C6—C7119.99 (15)C16—C15—H15119.9 (10)
C5—C6—H6117.3 (11)C14—C15—H15119.3 (10)
C7—C6—H6122.7 (11)C15—C16—C11121.12 (15)
C8—C7—C6119.93 (15)C15—C16—H16121.5 (10)
C8—C7—H7122.9 (10)C11—C16—H16117.3 (10)
C6—C7—H7117.1 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O21.05 (2)1.76 (2)2.594 (2)133 (1)
C2—H2···O3i0.88 (2)2.58 (2)3.233 (2)131 (1)
C6—H6···O1ii0.93 (2)2.51 (2)3.426 (2)169 (1)
C13—H13···O2iii0.96 (2)2.65 (2)3.323 (2)128 (1)
C15—H15···O1iv0.92 (2)2.66 (2)3.474 (2)148 (1)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+3/2, z1/2; (iii) x1/2, y+1/2, z1/2; (iv) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC16H11N3O3
Mr293.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.328 (2), 16.366 (4), 11.131 (3)
β (°) 99.33 (2)
V3)1317.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.55 × 0.16 × 0.09
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3173, 3025, 2041
Rint0.018
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.108, 1.31
No. of reflections3025
No. of parameters244
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.20, 0.16

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, PROFIT (Streltsov & Zavodnik, 1989), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2001).

Selected geometric parameters (Å, º) top
O1—C11.2235 (17)C1—C91.483 (2)
N1—N21.3462 (17)C2—C31.339 (2)
N2—C41.3053 (17)C3—C41.451 (2)
C1—C21.446 (2)C4—C101.4703 (19)
N2—N1—C11118.67 (12)N2—C4—C3126.51 (13)
C4—N2—N1118.69 (12)N2—C4—C10115.68 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O21.05 (2)1.76 (2)2.594 (2)133 (1)
C2—H2···O3i0.88 (2)2.58 (2)3.233 (2)131 (1)
C6—H6···O1ii0.93 (2)2.51 (2)3.426 (2)169 (1)
C13—H13···O2iii0.96 (2)2.65 (2)3.323 (2)128 (1)
C15—H15···O1iv0.92 (2)2.66 (2)3.474 (2)148 (1)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+3/2, z1/2; (iii) x1/2, y+1/2, z1/2; (iv) x1, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds