Download citation
Download citation
link to html
In the title compound, C24H17NO4, the oxetane ring deviates from planarity. The benzo­furan and indole moieties are in synclinal configurations, and the attached phenyl ring forms a dihedral angle of 68.0 (2)° with respect to the oxetane ring. Intramolecular C—H...O interactions stabilize the molecular structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801013125/cf6102sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801013125/cf6102Isup2.hkl
Contains datablock I

CCDC reference: 172210

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.064
  • wR factor = 0.169
  • Data-to-parameter ratio = 12.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The photoinduced reactions of 1H-indole-2,3-dione (isatin) derivatives, which are compounds of interest mainly due to their biological activities (Bieck et al., 1993) and their widespread use as synthetic precursors of many natural and unnatural products (Popp, 1975; Shvekhgeimer, 1996), have been investigated intensively (Ling et al., 1998; Xue et al., 2000, 2001) in order to extend the scope of the photoinduced reactions of carbonyl compounds. The title compound, (I), was one of the two diastereomers obtained in the photoinduced reaction of 1-acetylisatin with 2-phenylbenzofuran. To confirm its conformation and stereochemistry an X-ray structure determination of (I) was undertaken.

The bond lengths and angles observed in the title compound show normal values (Allen et al., 1987). These values within the indole and oxetene moieties agree with those of the corresponding related structures previously studied (Zukerman-Schpector et al., 1992; Prakash et al., 1997). The oxetane ring shows a slight puckering and therefore deviates from planarity, with a maximum deviation of -0.025 (3) Å and a dihedral angle of 174.6 (3)° between the O3/C8/C16 and C8/C9/C16 planes. Non-planar oxetanes also are observed in other derivatives (Morris et al., 1987; Khan et al., 1991; Prakash et al., 1997). The benzofuran and indole moieties are almost planar and make dihedral angles of 65.5 (2) and 89.0 (2)° with the mean plane through the oxetane. This corresponds to the synclinal configuration for the two moieties with respect to the oxetane. The angle C9—C16—C17 is 123.4 (2)°, implying that the attached phenyl ring is pushed slightly away from the benzofuran and indole moieties, and it forms a dihedral angle of 68.0 (2)° with the oxetane ring. Atom O2 deviates by -0.092 (2) Å from the mean plane of the indole moiety, while the acetyl group attached at N1 is twisted by 13.9 (2)° from the plane. The O1 atom of the acetyl group and the O2 atom show weak intramolecular hydrogen-bond interactions (Table 2) forming closed rings O1—C23—N1—C2—C3—H3A and O3—C16—C17—C22—H22A. These interactions stabilize the molecular structure.

Experimental top

The title compound, (I), was prepared by the photoinduced reaction (Peterno-Büchi reaction; Arnold, 1968) of a benzene solution (40 ml) of 1-acetylisatin (0.05 M) and 2-phenylbenzofuran (0.1 M) with a Pyrex-filtered light of a medium-pressure mercury lamp (500 W, λ > 400 nm). The reaction was carried out under constant nitrogen purging. After irradiation, the solvent was removed in vacuo and the residue was separated by column chromatography. Compound (I) was obtained as the main diastereomer of the product and was recrystallized from a mixture of petroleum ether and ethyl acetate.

Refinement top

After checking their presence in the difference map, all H atoms were geometrically fixed and allowed to ride on the parent C atoms and refined isotropically. Due to a large fraction of weak data at higher angles, the 2θ maximum was limited to 50°.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
1-Acetyl-7a'-phenyl-spiro[3H-indole-3,2'(2a'H)oxeto [2,3-b]benzofuran-2(1H)-one top
Crystal data top
C24H17NO4F(000) = 400
Mr = 383.39Dx = 1.370 Mg m3
Triclinic, P1Melting point: 477 K
a = 9.2136 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2904 (3) ÅCell parameters from 3227 reflections
c = 10.9603 (3) Åθ = 2.0–28.3°
α = 68.119 (1)°µ = 0.09 mm1
β = 80.830 (1)°T = 293 K
γ = 75.083 (1)°Slab, colourless
V = 929.47 (4) Å30.36 × 0.28 × 0.18 mm
Z = 2
Data collection top
Siemens SMART CCD area-detector
diffractometer
2148 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
Detector resolution: 8.33 pixels mm-1h = 109
ω scansk = 128
5322 measured reflectionsl = 1312
3231 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.0957P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
3231 reflectionsΔρmax = 0.29 e Å3
264 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.081 (8)
Crystal data top
C24H17NO4γ = 75.083 (1)°
Mr = 383.39V = 929.47 (4) Å3
Triclinic, P1Z = 2
a = 9.2136 (2) ÅMo Kα radiation
b = 10.2904 (3) ŵ = 0.09 mm1
c = 10.9603 (3) ÅT = 293 K
α = 68.119 (1)°0.36 × 0.28 × 0.18 mm
β = 80.830 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2148 reflections with I > 2σ(I)
5322 measured reflectionsRint = 0.048
3231 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 0.94Δρmax = 0.29 e Å3
3231 reflectionsΔρmin = 0.31 e Å3
264 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4871 (2)0.1249 (3)0.2689 (2)0.0686 (7)
O20.6613 (2)0.2085 (2)0.54998 (19)0.0495 (5)
O30.38393 (19)0.38228 (18)0.64948 (16)0.0403 (5)
O40.3178 (2)0.3650 (2)0.87177 (18)0.0472 (5)
N10.4705 (2)0.1806 (2)0.45250 (19)0.0332 (5)
C10.5315 (3)0.2088 (3)0.5471 (2)0.0336 (6)
C20.3150 (3)0.1753 (3)0.4911 (2)0.0328 (6)
C30.2134 (3)0.1497 (3)0.4279 (3)0.0437 (7)
H3A0.24240.12660.35200.052*
C40.0660 (3)0.1599 (3)0.4823 (3)0.0484 (7)
H4A0.00500.14290.44170.058*
C50.0217 (3)0.1945 (3)0.5946 (3)0.0509 (8)
H5A0.07820.20120.62830.061*
C60.1242 (3)0.2193 (3)0.6570 (3)0.0463 (7)
H6A0.09460.24290.73270.056*
C70.2721 (3)0.2086 (3)0.6059 (2)0.0357 (6)
C80.4033 (3)0.2369 (3)0.6491 (2)0.0347 (6)
C90.4514 (3)0.1737 (3)0.7929 (2)0.0329 (6)
H9A0.55270.11250.80580.039*
C100.3338 (3)0.1269 (3)0.9002 (2)0.0355 (6)
C110.2916 (3)0.0022 (3)0.9607 (2)0.0432 (7)
H11A0.34010.08080.93610.052*
C120.1750 (3)0.0135 (4)1.0594 (3)0.0560 (8)
H12A0.14490.10031.10090.067*
C130.1040 (4)0.1030 (4)1.0961 (3)0.0621 (9)
H13A0.02660.09351.16250.075*
C140.1454 (3)0.2346 (4)1.0360 (3)0.0545 (8)
H14A0.09690.31331.06040.065*
C150.2618 (3)0.2433 (3)0.9387 (2)0.0410 (7)
C160.4378 (3)0.3324 (3)0.7788 (2)0.0378 (7)
C170.5684 (3)0.3908 (3)0.7850 (2)0.0375 (6)
C180.6015 (3)0.3906 (3)0.9045 (3)0.0468 (7)
H18A0.53790.36080.97950.056*
C190.7282 (4)0.4345 (3)0.9125 (3)0.0572 (8)
H19A0.74970.43330.99300.069*
C200.8231 (4)0.4800 (3)0.8018 (3)0.0559 (8)
H20A0.90850.50900.80770.067*
C210.7908 (3)0.4822 (3)0.6834 (3)0.0494 (8)
H21A0.85500.51220.60890.059*
C220.6631 (3)0.4400 (3)0.6737 (3)0.0444 (7)
H22A0.64070.44460.59220.053*
C230.5448 (3)0.1673 (3)0.3331 (3)0.0431 (7)
C240.6938 (3)0.2084 (4)0.2925 (3)0.0580 (9)
H24C0.72540.20860.20460.087*
H24A0.76680.14070.35190.087*
H24B0.68530.30250.29470.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0626 (14)0.113 (2)0.0514 (13)0.0160 (13)0.0005 (11)0.0565 (14)
O20.0356 (12)0.0732 (14)0.0490 (12)0.0110 (9)0.0006 (9)0.0336 (11)
O30.0535 (11)0.0343 (10)0.0319 (10)0.0038 (8)0.0086 (8)0.0118 (8)
O40.0573 (12)0.0472 (12)0.0394 (11)0.0095 (9)0.0094 (9)0.0240 (9)
N10.0371 (12)0.0384 (12)0.0245 (11)0.0053 (9)0.0015 (9)0.0135 (9)
C10.0369 (15)0.0363 (15)0.0285 (13)0.0059 (10)0.0028 (11)0.0134 (11)
C20.0392 (15)0.0333 (14)0.0242 (13)0.0058 (11)0.0053 (11)0.0083 (11)
C30.0491 (17)0.0462 (17)0.0385 (15)0.0082 (12)0.0071 (13)0.0178 (13)
C40.0452 (17)0.0501 (18)0.0546 (18)0.0137 (13)0.0153 (14)0.0163 (14)
C50.0377 (16)0.064 (2)0.0481 (18)0.0119 (13)0.0034 (13)0.0149 (15)
C60.0390 (16)0.0587 (19)0.0390 (16)0.0063 (13)0.0020 (12)0.0175 (14)
C70.0370 (14)0.0372 (15)0.0306 (14)0.0046 (11)0.0053 (11)0.0103 (11)
C80.0402 (15)0.0367 (15)0.0281 (13)0.0043 (11)0.0044 (11)0.0142 (11)
C90.0404 (14)0.0377 (15)0.0226 (12)0.0079 (11)0.0038 (10)0.0125 (11)
C100.0431 (15)0.0432 (16)0.0201 (12)0.0087 (11)0.0054 (11)0.0102 (11)
C110.0546 (18)0.0438 (17)0.0309 (14)0.0132 (13)0.0053 (13)0.0099 (12)
C120.060 (2)0.070 (2)0.0394 (16)0.0295 (16)0.0032 (15)0.0131 (16)
C130.056 (2)0.091 (3)0.0418 (17)0.0266 (18)0.0118 (15)0.0244 (18)
C140.0515 (18)0.074 (2)0.0436 (17)0.0108 (15)0.0088 (14)0.0328 (16)
C150.0460 (16)0.0508 (18)0.0284 (14)0.0110 (13)0.0023 (12)0.0158 (13)
C160.0494 (16)0.0400 (16)0.0244 (13)0.0052 (12)0.0022 (11)0.0150 (11)
C170.0516 (16)0.0296 (14)0.0325 (14)0.0088 (11)0.0025 (12)0.0122 (11)
C180.066 (2)0.0441 (17)0.0354 (15)0.0178 (14)0.0022 (13)0.0157 (13)
C190.077 (2)0.060 (2)0.0423 (17)0.0212 (16)0.0138 (16)0.0189 (15)
C200.065 (2)0.0475 (19)0.059 (2)0.0215 (15)0.0082 (16)0.0154 (15)
C210.0581 (19)0.0396 (17)0.0468 (17)0.0162 (13)0.0037 (14)0.0101 (13)
C220.0611 (19)0.0374 (16)0.0325 (14)0.0115 (13)0.0025 (13)0.0096 (12)
C230.0483 (17)0.0529 (18)0.0257 (14)0.0021 (13)0.0022 (12)0.0170 (13)
C240.056 (2)0.082 (2)0.0345 (16)0.0188 (16)0.0116 (14)0.0216 (16)
Geometric parameters (Å, º) top
O1—C231.199 (3)C10—C151.391 (4)
O2—C11.201 (3)C11—C121.393 (4)
O3—C161.439 (3)C11—H11A0.930
O3—C81.462 (3)C12—C131.378 (4)
O4—C151.378 (3)C12—H12A0.930
O4—C161.442 (3)C13—C141.390 (4)
N1—C11.403 (3)C13—H13A0.930
N1—C231.414 (3)C14—C151.382 (4)
N1—C21.437 (3)C14—H14A0.930
C1—C81.541 (3)C16—C171.497 (4)
C2—C31.376 (4)C17—C181.390 (4)
C2—C71.396 (3)C17—C221.391 (4)
C3—C41.388 (4)C18—C191.381 (4)
C3—H3A0.930C18—H18A0.930
C4—C51.379 (4)C19—C201.380 (4)
C4—H4A0.930C19—H19A0.930
C5—C61.373 (4)C20—C211.367 (4)
C5—H5A0.930C20—H20A0.930
C6—C71.382 (4)C21—C221.386 (4)
C6—H6A0.930C21—H21A0.930
C7—C81.495 (3)C22—H22A0.930
C8—C91.553 (3)C23—C241.492 (4)
C9—C101.493 (3)C24—H24C0.960
C9—C161.555 (3)C24—H24A0.960
C9—H9A0.980C24—H24B0.960
C10—C111.372 (4)
C16—O3—C893.09 (16)C13—C12—H12A119.8
C15—O4—C16107.99 (19)C11—C12—H12A119.8
C1—N1—C23126.5 (2)C12—C13—C14121.5 (3)
C1—N1—C2109.43 (18)C12—C13—H13A119.2
C23—N1—C2124.0 (2)C14—C13—H13A119.2
O2—C1—N1126.2 (2)C15—C14—C13117.2 (3)
O2—C1—C8125.7 (2)C15—C14—H14A121.4
N1—C1—C8108.1 (2)C13—C14—H14A121.4
C3—C2—C7121.5 (2)O4—C15—C14124.2 (3)
C3—C2—N1128.8 (2)O4—C15—C10113.8 (2)
C7—C2—N1109.6 (2)C14—C15—C10121.9 (3)
C2—C3—C4117.2 (3)O3—C16—O4110.5 (2)
C2—C3—H3A121.4O3—C16—C17114.3 (2)
C4—C3—H3A121.4O4—C16—C17109.1 (2)
C5—C4—C3121.9 (3)O3—C16—C991.08 (17)
C5—C4—H4A119.1O4—C16—C9107.13 (19)
C3—C4—H4A119.1C17—C16—C9123.4 (2)
C6—C5—C4120.3 (3)C18—C17—C22118.5 (3)
C6—C5—H5A119.8C18—C17—C16120.3 (2)
C4—C5—H5A119.8C22—C17—C16121.2 (2)
C5—C6—C7119.0 (3)C19—C18—C17120.4 (3)
C5—C6—H6A120.5C19—C18—H18A119.8
C7—C6—H6A120.5C17—C18—H18A119.8
C6—C7—C2120.0 (2)C20—C19—C18120.4 (3)
C6—C7—C8130.1 (2)C20—C19—H19A119.8
C2—C7—C8109.7 (2)C18—C19—H19A119.8
O3—C8—C7115.07 (19)C21—C20—C19119.6 (3)
O3—C8—C1110.00 (19)C21—C20—H20A120.2
C7—C8—C1102.86 (19)C19—C20—H20A120.2
O3—C8—C990.29 (16)C20—C21—C22120.5 (3)
C7—C8—C9124.6 (2)C20—C21—H21A119.7
C1—C8—C9113.71 (19)C22—C21—H21A119.7
C10—C9—C8117.0 (2)C21—C22—C17120.4 (3)
C10—C9—C16103.13 (19)C21—C22—H22A119.8
C8—C9—C1685.28 (17)C17—C22—H22A119.8
C10—C9—H9A115.6O1—C23—N1119.8 (3)
C8—C9—H9A115.6O1—C23—C24122.8 (2)
C16—C9—H9A115.6N1—C23—C24117.5 (2)
C11—C10—C15120.1 (2)C23—C24—H24C109.5
C11—C10—C9132.1 (2)C23—C24—H24A109.5
C15—C10—C9107.9 (2)H24C—C24—H24A109.5
C10—C11—C12118.9 (3)C23—C24—H24B109.5
C10—C11—H11A120.5H24C—C24—H24B109.5
C12—C11—H11A120.5H24A—C24—H24B109.5
C13—C12—C11120.4 (3)
C23—N1—C1—O29.9 (4)C15—C10—C11—C120.7 (4)
C2—N1—C1—O2173.5 (2)C9—C10—C11—C12179.7 (3)
C23—N1—C1—C8171.4 (2)C10—C11—C12—C130.4 (4)
C2—N1—C1—C85.2 (3)C11—C12—C13—C140.3 (5)
C1—N1—C2—C3179.5 (2)C12—C13—C14—C150.5 (5)
C23—N1—C2—C33.8 (4)C16—O4—C15—C14179.9 (3)
C1—N1—C2—C73.6 (3)C16—O4—C15—C100.3 (3)
C23—N1—C2—C7173.0 (2)C13—C14—C15—O4178.7 (3)
C7—C2—C3—C40.6 (4)C13—C14—C15—C100.9 (4)
N1—C2—C3—C4175.8 (2)C11—C10—C15—O4178.6 (2)
C2—C3—C4—C50.2 (4)C9—C10—C15—O41.1 (3)
C3—C4—C5—C60.4 (5)C11—C10—C15—C141.0 (4)
C4—C5—C6—C70.2 (4)C9—C10—C15—C14179.3 (2)
C5—C6—C7—C21.0 (4)C8—O3—C16—O4112.7 (2)
C5—C6—C7—C8176.5 (3)C8—O3—C16—C17123.9 (2)
C3—C2—C7—C61.3 (4)C8—O3—C16—C93.93 (17)
N1—C2—C7—C6175.8 (2)C15—O4—C16—O398.4 (2)
C3—C2—C7—C8177.6 (2)C15—O4—C16—C17135.2 (2)
N1—C2—C7—C80.5 (3)C15—O4—C16—C90.6 (2)
C16—O3—C8—C7132.9 (2)C10—C9—C16—O3112.98 (19)
C16—O3—C8—C1111.5 (2)C8—C9—C16—O33.71 (16)
C16—O3—C8—C93.94 (18)C10—C9—C16—O41.2 (2)
C6—C7—C8—O358.7 (4)C8—C9—C16—O4115.5 (2)
C2—C7—C8—O3117.2 (2)C10—C9—C16—C17126.7 (2)
C6—C7—C8—C1178.3 (3)C8—C9—C16—C17116.6 (2)
C2—C7—C8—C12.5 (3)O3—C16—C17—C18159.5 (2)
C6—C7—C8—C950.5 (4)O4—C16—C17—C1835.3 (3)
C2—C7—C8—C9133.6 (2)C9—C16—C17—C1891.7 (3)
O2—C1—C8—O362.9 (3)O3—C16—C17—C2223.6 (3)
N1—C1—C8—O3118.4 (2)O4—C16—C17—C22147.8 (2)
O2—C1—C8—C7174.1 (3)C9—C16—C17—C2285.2 (3)
N1—C1—C8—C74.6 (3)C22—C17—C18—C191.8 (4)
O2—C1—C8—C936.7 (4)C16—C17—C18—C19175.2 (3)
N1—C1—C8—C9142.0 (2)C17—C18—C19—C200.4 (5)
O3—C8—C9—C1098.7 (2)C18—C19—C20—C210.3 (5)
C7—C8—C9—C1022.5 (3)C19—C20—C21—C220.5 (5)
C1—C8—C9—C10149.2 (2)C20—C21—C22—C171.9 (4)
O3—C8—C9—C163.65 (16)C18—C17—C22—C212.6 (4)
C7—C8—C9—C16124.9 (2)C16—C17—C22—C21174.4 (2)
C1—C8—C9—C16108.4 (2)C1—N1—C23—O1170.4 (3)
C8—C9—C10—C1190.3 (3)C2—N1—C23—O113.5 (4)
C16—C9—C10—C11178.3 (3)C1—N1—C23—C249.9 (4)
C8—C9—C10—C1590.1 (3)C2—N1—C23—C24166.2 (2)
C16—C9—C10—C151.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O10.932.292.839 (4)117
C22—H22A···O30.932.532.857 (3)100

Experimental details

Crystal data
Chemical formulaC24H17NO4
Mr383.39
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.2136 (2), 10.2904 (3), 10.9603 (3)
α, β, γ (°)68.119 (1), 80.830 (1), 75.083 (1)
V3)929.47 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.36 × 0.28 × 0.18
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5322, 3231, 2148
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.169, 0.94
No. of reflections3231
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.31

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
O3—C161.439 (3)C2—C71.396 (3)
O3—C81.462 (3)C7—C81.495 (3)
O4—C151.378 (3)C8—C91.553 (3)
O4—C161.442 (3)C9—C101.493 (3)
N1—C11.403 (3)C9—C161.555 (3)
N1—C21.437 (3)C10—C151.391 (4)
C1—C81.541 (3)C16—C171.497 (4)
C16—O3—C893.09 (16)O3—C8—C990.29 (16)
C15—O4—C16107.99 (19)O3—C16—C991.08 (17)
C1—N1—C2109.43 (18)O4—C16—C9107.13 (19)
N1—C1—C8108.1 (2)C17—C16—C9123.4 (2)
C7—C8—C1102.86 (19)
C1—N1—C2—C3179.5 (2)C16—C9—C10—C11178.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O10.932.29132.839 (4)117
C22—H22A···O30.932.53182.857 (3)100
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds