Download citation
Download citation
link to html
The hydro­thermal reaction of an aqueous solution of sodium molybdate, hypo­phospho­rous acid, hydro­chloric acid and N,N-di­methyl­form­amide (DMF) gave rise to tetradi­methyl­ammonium tetra­hydroxy­dotriacontaoxo­(tetraoxophosphato)­dodecamolybdate di­hydro­chloride tetrahydrate. The poly­anion has a β-Keggin structure, with P—O distances ranging from 1.535 (5) to 1.552 (5) Å and Mo—O distances from 1.664 (4) to 2.509 (4) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801010467/cf6065sup1.cif
Contains datablocks I, new

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801010467/cf6065Isup2.hkl
Contains datablock I

CCDC reference: 172189

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](N-C) = 0.013 Å
  • H-atom completeness 55%
  • R factor = 0.034
  • wR factor = 0.090
  • Data-to-parameter ratio = 13.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C8 H44 Cl2 Mo12 N4 O44 P1 Atom count from the _atom_site data: C8 H24 Cl2 Mo12 N4 O44 P1 ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.845 Tmax scaled 0.539 Tmin scaled 0.260 CELLZ_01 From the CIF: _cell_formula_units_Z 4 From the CIF: _chemical_formula_sum C8 H44 Cl2 Mo12 N4 O44 P TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 32.00 32.00 0.00 H 176.00 96.00 80.00 Cl 8.00 8.00 0.00 Mo 48.00 48.00 0.00 N 16.00 16.00 0.00 O 176.00 176.00 0.00 P 4.00 4.00 0.00 Difference between formula and atom_site contents detected. WARNING: H atoms missing from atom site list. Is this intentional?

Comment top

The structure of the [PMo12O40]3- heteropolyanion was first reported by Strandberg (1975) and then by D'amour & Allmann (1976). Fruchart and Souchay had shown that reduction of the Keggin-structure anion α-[PMo12O40]3- in aqueous acidic solutions leaded to a stable heteropoly blue isomeric β-anion (1968). However, the conclusion had not been structurally proved until 1985 (Barrows et al., 1985). The title compound, (I), is a pseudo-Keggin (Keggin, 1934) heteropoly compound, of which four Mo atoms are reduced (confirmed by cerimetric titration) and four bridging O atoms are protonated. The Mo—O distances range from 2.090 (4) to 2.115 (3) Å (cf. 1.92 Å for oxidized structures) and Mo—O—Mo angles from 115.7 (2) to 147.8 (2)° (cf. 92° for the oxidized structures) (Barrows et al., 1985).

As shown in Fig. 1, the [PMo12O40]2- polyanion consists of one {PO4} tetrahedron and 12 {MoO6} octahedra. The central almost regular {PO4} is a tetrahedron with P—O distances ranging from 1.535 (5) to 1.552 (5) Å and O—P—O angles ranging from 109.1 (2) to 110.0 (3)°. The coordination environment for each Mo atom is a distorted octahedron, with Mo—O distances ranging from 1.664 (4) to 2.509 (4) Å and angles involving the neighboring O atoms from 71.2 (1) to 105.6 (2)°. The {PO4} tetrahedeon and 12 {MoO6} octahedra are linked together through µ4-O atoms. All O atoms of the anion can be divided into three groups: terminal O atoms, µ2-O atoms and µ4-O atoms. The distances between terminal O atoms and Mo atoms range from 1.664 (4) to 1.678 (4) Å, while that of µ2-O atoms and µ4-O atoms range from 1.865 (4) to 2.115 (3) Å and from 2.406 (3) to 2.509 (4) Å, respectively.

The title compound contains two chlorine anions in its crystal structure. As shown in Fig. 2, the (CH3)2NH2+ and Cl- ions and water molecules are filled inside the unit cell. Finally, it should also be pointed out, as no (CH3)2NH2+ ion was added to the reaction, the cation might derive from DMF, however, the mechanism is still to be further studied.

Experimental top

The title compound was prepared by hydrothermal synthesis from a mixture of Na2MoO4·2H2O (1.21 g, 5 mmol), DMF (0.5 ml), 35% HCl (2.5 ml), 35% H3PO2 (0.2 ml) in H2O (8 ml), heated at 433 K for one day and cooled. After filtration, the filtrate was allowed to stand in air for about one week, whereupon blue crystals suitable for X-ray diffraction study were obtained. Elemental analysis, calculated: Mo 53.46, P 1.44, Cl 3.29, C 4.46, N 2.60, H 2.06%; found: Mo 53.39, P 1.39, Cl 3.30, C 4.41, N 2.54, H 2.02%.

Refinement top

As the distorted problem, only the H atoms based on C and N atoms were generated geometrically; other H atoms were not located. The highest residual peak is located at (0.1216, 1/4, 0.3588),1.10 Å from O1; the deepest hole is located at (0.5480, 1/4, 0.4682), 0.91 Å from Mo4.

Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SMART and SAINT (Siemens, 1996); data reduction: XPREP in SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of the [(H4PMo12O40)]2- anion. [Author: the hpg file for this figure did not convert well with regard to the atom labels. Please forward a postscript file with the proof corrections]
[Figure 2] Fig. 2. Packing diagram viewed down the a axis.
tetradimethylammonium hexahydroxytriacontaoxo- (tetraoxophosphato)dodecamolybdate dichloride top
Crystal data top
(C2H6NH2)4[H4PMo12O40]Cl2·4H2ODx = 2.801 Mg m3
Mr = 2153.62Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 5625 reflections
a = 14.9803 (7) Åθ = 1.6–25.0°
b = 15.0682 (8) ŵ = 3.09 mm1
c = 22.6217 (12) ÅT = 293 K
V = 5106.3 (5) Å3Prism, blue
Z = 40.45 × 0.25 × 0.20 mm
F(000) = 4100
Data collection top
SMART CCD
diffractometer
4616 independent reflections
Radiation source: fine-focus sealed tube3868 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1617
Tmin = 0.308, Tmax = 0.638k = 1717
16093 measured reflectionsl = 1626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0451P)2 + 4.5711P]
where P = (Fo2 + 2Fc2)/3
4616 reflections(Δ/σ)max = 0.001
346 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 1.45 e Å3
Crystal data top
(C2H6NH2)4[H4PMo12O40]Cl2·4H2OV = 5106.3 (5) Å3
Mr = 2153.62Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 14.9803 (7) ŵ = 3.09 mm1
b = 15.0682 (8) ÅT = 293 K
c = 22.6217 (12) Å0.45 × 0.25 × 0.20 mm
Data collection top
SMART CCD
diffractometer
4616 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3868 reflections with I > 2σ(I)
Tmin = 0.308, Tmax = 0.638Rint = 0.045
16093 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.77 e Å3
4616 reflectionsΔρmin = 1.45 e Å3
346 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.52413 (3)0.12694 (3)0.41208 (2)0.02241 (14)
Mo20.90300 (3)0.12836 (3)0.45329 (2)0.02278 (14)
Mo30.72576 (3)0.12815 (3)0.34095 (2)0.02241 (14)
Mo40.49640 (4)0.25000.55895 (3)0.02137 (17)
Mo50.67296 (3)0.13119 (3)0.61515 (2)0.01957 (13)
Mo60.87958 (4)0.25000.58057 (3)0.02083 (16)
Mo70.69432 (3)0.00835 (3)0.47544 (2)0.02279 (13)
Cl11.04719 (18)0.25000.30235 (11)0.0518 (6)
Cl20.68407 (15)0.25000.26296 (10)0.0415 (6)
P10.70035 (11)0.25000.47753 (8)0.0149 (4)
O10.9514 (3)0.25000.6371 (2)0.0323 (14)
O20.5758 (2)0.0218 (3)0.44803 (16)0.0256 (8)
O30.6771 (2)0.0641 (3)0.67374 (16)0.0307 (9)
O40.7034 (3)0.1001 (3)0.48767 (18)0.0333 (10)
O50.8021 (3)0.25000.4856 (2)0.0209 (11)
O60.6727 (2)0.1660 (2)0.44290 (15)0.0203 (8)
O70.9573 (3)0.25000.4264 (2)0.0235 (12)
O80.6694 (2)0.0533 (3)0.55117 (16)0.0255 (9)
O90.9346 (2)0.1613 (3)0.53001 (15)0.0243 (9)
O100.6548 (3)0.25000.5391 (2)0.0187 (11)
O110.5476 (2)0.1603 (3)0.60879 (15)0.0224 (8)
O120.7923 (2)0.1618 (3)0.60303 (16)0.0234 (8)
O130.8357 (2)0.1380 (3)0.37983 (16)0.0247 (9)
O140.8142 (2)0.0489 (3)0.47890 (16)0.0258 (9)
O150.6001 (2)0.1139 (3)0.34373 (16)0.0248 (9)
O160.3909 (3)0.25000.5835 (2)0.0280 (13)
O170.5123 (3)0.25000.3971 (2)0.0238 (12)
O180.7188 (3)0.25000.3262 (2)0.0261 (12)
O190.4928 (2)0.1605 (3)0.49627 (16)0.0302 (9)
O200.4279 (3)0.0872 (3)0.38600 (18)0.0346 (10)
O210.6718 (3)0.25000.6649 (2)0.0221 (12)
O220.9877 (3)0.0626 (3)0.43334 (17)0.0360 (11)
O230.7495 (3)0.0881 (3)0.27354 (17)0.0343 (10)
O240.7223 (2)0.0052 (3)0.38493 (15)0.0254 (9)
O1010.5965 (3)0.0864 (3)0.32466 (17)0.0330 (10)
O1020.6143 (9)0.25000.7104 (5)0.125 (4)
O1030.4613 (5)0.25000.2462 (3)0.088 (3)
N10.5509 (3)0.0347 (4)0.2284 (2)0.0383 (13)
N20.3499 (6)0.25000.1476 (4)0.057 (2)
N30.7597 (10)0.25000.6511 (7)0.129 (6)
C10.4530 (4)0.0237 (6)0.2277 (3)0.058 (2)
H1A0.42670.06190.25690.087*
H1B0.43040.03910.18930.087*
H1C0.43820.03690.23640.087*
C20.5965 (5)0.0230 (6)0.1847 (3)0.063 (2)
H2A0.65980.01350.18690.095*
H2B0.58360.08410.19340.095*
H2C0.57570.00900.14570.095*
C30.3517 (7)0.1708 (8)0.1111 (6)0.116 (4)
H3A0.35030.11910.13590.174*
H3B0.40540.17040.08790.174*
H3C0.30080.17060.08530.174*
C40.7657 (10)0.1759 (17)0.6131 (8)0.289 (17)
H4A0.75930.12240.63570.434*
H4B0.82280.17600.59370.434*
H4C0.71920.17900.58400.434*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0196 (2)0.0251 (3)0.0226 (3)0.0038 (2)0.00269 (18)0.0011 (2)
Mo20.0187 (2)0.0298 (3)0.0199 (3)0.0037 (2)0.00098 (18)0.0018 (2)
Mo30.0238 (3)0.0269 (3)0.0165 (2)0.0001 (2)0.00005 (18)0.00272 (19)
Mo40.0159 (3)0.0302 (4)0.0179 (3)0.0000.0019 (3)0.000
Mo50.0194 (2)0.0227 (3)0.0166 (2)0.00018 (19)0.00151 (17)0.00262 (19)
Mo60.0153 (3)0.0304 (4)0.0167 (3)0.0000.0014 (2)0.000
Mo70.0271 (3)0.0201 (3)0.0212 (2)0.0003 (2)0.00027 (19)0.00061 (19)
Cl10.0616 (15)0.0495 (16)0.0445 (14)0.0000.0158 (12)0.000
Cl20.0421 (12)0.0495 (15)0.0330 (12)0.0000.0087 (9)0.000
P10.0138 (8)0.0185 (11)0.0123 (8)0.0000.0004 (7)0.000
O10.024 (3)0.048 (4)0.025 (3)0.0000.005 (2)0.000
O20.027 (2)0.025 (2)0.024 (2)0.0048 (18)0.0001 (16)0.0019 (17)
O30.033 (2)0.037 (3)0.021 (2)0.0010 (19)0.0025 (16)0.0068 (18)
O40.042 (2)0.021 (2)0.036 (2)0.0032 (19)0.0026 (19)0.0005 (19)
O50.017 (2)0.028 (3)0.018 (3)0.0000.003 (2)0.000
O60.0202 (18)0.023 (2)0.0177 (18)0.0002 (16)0.0007 (14)0.0022 (16)
O70.018 (2)0.027 (3)0.026 (3)0.0000.003 (2)0.000
O80.028 (2)0.028 (2)0.0205 (19)0.0004 (17)0.0018 (15)0.0019 (17)
O90.0159 (18)0.036 (2)0.0214 (19)0.0019 (17)0.0001 (15)0.0005 (17)
O100.016 (2)0.027 (3)0.014 (2)0.0000.0027 (19)0.000
O110.0197 (18)0.028 (2)0.0199 (18)0.0002 (17)0.0034 (15)0.0015 (16)
O120.0211 (18)0.028 (2)0.0209 (19)0.0026 (17)0.0000 (15)0.0024 (16)
O130.025 (2)0.029 (2)0.0197 (19)0.0014 (17)0.0016 (15)0.0024 (16)
O140.0273 (19)0.027 (2)0.0234 (19)0.0010 (18)0.0021 (15)0.0018 (17)
O150.026 (2)0.029 (2)0.0192 (19)0.0009 (17)0.0026 (15)0.0010 (17)
O160.020 (3)0.040 (4)0.023 (3)0.0000.004 (2)0.000
O170.023 (3)0.030 (3)0.019 (3)0.0000.001 (2)0.000
O180.025 (3)0.033 (3)0.020 (3)0.0000.000 (2)0.000
O190.0226 (19)0.048 (3)0.0198 (19)0.0021 (19)0.0006 (15)0.0070 (19)
O200.028 (2)0.040 (3)0.036 (2)0.010 (2)0.0051 (18)0.001 (2)
O210.024 (3)0.028 (3)0.014 (2)0.0000.003 (2)0.000
O220.029 (2)0.047 (3)0.032 (2)0.014 (2)0.0030 (17)0.005 (2)
O230.037 (2)0.043 (3)0.023 (2)0.000 (2)0.0030 (17)0.0086 (19)
O240.0295 (19)0.027 (2)0.0201 (19)0.0007 (18)0.0024 (16)0.0009 (16)
O1010.039 (2)0.029 (2)0.031 (2)0.004 (2)0.0027 (18)0.0005 (19)
O1020.172 (12)0.121 (10)0.082 (8)0.0000.028 (7)0.000
O1030.045 (4)0.184 (11)0.035 (4)0.0000.011 (3)0.000
N10.037 (3)0.043 (4)0.035 (3)0.003 (3)0.004 (2)0.003 (2)
N20.044 (5)0.071 (7)0.057 (6)0.0000.006 (4)0.000
N30.120 (12)0.173 (17)0.094 (11)0.0000.028 (9)0.000
C10.040 (4)0.078 (6)0.056 (5)0.002 (4)0.004 (3)0.020 (4)
C20.069 (5)0.086 (6)0.034 (4)0.030 (5)0.001 (3)0.016 (4)
C30.082 (7)0.121 (10)0.145 (11)0.051 (8)0.019 (7)0.032 (9)
C40.116 (12)0.51 (4)0.24 (2)0.127 (18)0.045 (13)0.24 (2)
Geometric parameters (Å, º) top
Mo1—O201.668 (4)Mo5—O102.497 (3)
Mo1—O171.893 (1)Mo6—O11.672 (5)
Mo1—O151.930 (4)Mo6—O12i1.933 (4)
Mo1—O21.941 (4)Mo6—O121.933 (4)
Mo1—O192.026 (4)Mo6—O91.943 (4)
Mo1—O62.406 (3)Mo6—O9i1.943 (4)
Mo2—O221.672 (4)Mo6—O52.442 (5)
Mo2—O91.866 (4)Mo7—O41.663 (4)
Mo2—O141.881 (4)Mo7—O81.879 (4)
Mo2—O131.949 (4)Mo7—O21.892 (4)
Mo2—O72.096 (2)Mo7—O141.899 (4)
Mo2—O52.486 (3)Mo7—O242.090 (3)
Mo3—O231.678 (4)Mo7—O62.508 (4)
Mo3—O181.869 (1)P1—O51.535 (5)
Mo3—O131.873 (4)P1—O61.545 (4)
Mo3—O151.896 (4)P1—O6i1.545 (4)
Mo3—O242.104 (4)P1—O101.552 (5)
Mo3—O62.505 (3)O5—Mo2i2.486 (3)
Mo4—O161.676 (5)O7—Mo2i2.096 (2)
Mo4—O111.921 (4)O10—Mo5i2.497 (3)
Mo4—O11i1.921 (4)O17—Mo1i1.8933 (11)
Mo4—O19i1.958 (4)O18—Mo3i1.8690 (11)
Mo4—O191.958 (4)O21—Mo5i2.115 (3)
Mo4—O102.415 (5)N1—C11.477 (8)
Mo5—O31.669 (4)N1—C21.482 (8)
Mo5—O81.865 (4)N2—C31.452 (12)
Mo5—O121.866 (3)N2—C3ii1.452 (12)
Mo5—O111.933 (3)N3—C41.413 (18)
Mo5—O212.115 (3)N3—C4ii1.413 (18)
O20—Mo1—O17101.9 (2)O11—Mo5—O1071.37 (15)
O20—Mo1—O15100.92 (18)O21—Mo5—O1076.04 (13)
O17—Mo1—O1590.69 (19)O1—Mo6—O12i103.56 (17)
O20—Mo1—O2101.53 (19)O1—Mo6—O12103.56 (17)
O17—Mo1—O2155.69 (18)O12i—Mo6—O1286.9 (2)
O15—Mo1—O290.99 (16)O1—Mo6—O9100.23 (17)
O20—Mo1—O19102.83 (18)O12i—Mo6—O9156.20 (15)
O17—Mo1—O1984.4 (2)O12—Mo6—O988.20 (16)
O15—Mo1—O19156.25 (15)O1—Mo6—O9i100.23 (17)
O2—Mo1—O1984.37 (17)O12i—Mo6—O9i88.20 (16)
O20—Mo1—O6171.74 (18)O12—Mo6—O9i156.20 (15)
O17—Mo1—O684.18 (17)O9—Mo6—O9i87.0 (2)
O15—Mo1—O673.24 (13)O1—Mo6—O5168.3 (2)
O2—Mo1—O673.12 (14)O12i—Mo6—O584.80 (13)
O19—Mo1—O683.14 (13)O12—Mo6—O584.80 (13)
O22—Mo2—O9102.48 (17)O9—Mo6—O571.57 (13)
O22—Mo2—O14104.03 (19)O9i—Mo6—O571.57 (13)
O9—Mo2—O1493.56 (16)O4—Mo7—O8102.62 (18)
O22—Mo2—O13101.92 (17)O4—Mo7—O2103.71 (19)
O9—Mo2—O13154.74 (16)O8—Mo7—O294.24 (16)
O14—Mo2—O1386.79 (16)O4—Mo7—O14103.38 (19)
O22—Mo2—O798.34 (19)O8—Mo7—O1491.97 (16)
O9—Mo2—O786.51 (18)O2—Mo7—O14150.11 (16)
O14—Mo2—O7157.05 (17)O4—Mo7—O2497.12 (18)
O13—Mo2—O783.61 (18)O8—Mo7—O24160.20 (16)
O22—Mo2—O5167.92 (17)O2—Mo7—O2482.50 (14)
O9—Mo2—O571.62 (16)O14—Mo7—O2481.85 (15)
O14—Mo2—O587.07 (15)O4—Mo7—O6171.97 (16)
O13—Mo2—O583.19 (16)O8—Mo7—O684.31 (14)
O7—Mo2—O571.15 (14)O2—Mo7—O671.41 (14)
O23—Mo3—O18101.7 (2)O14—Mo7—O680.19 (14)
O23—Mo3—O13105.60 (18)O24—Mo7—O676.12 (13)
O18—Mo3—O1393.16 (19)O5—P1—O6109.1 (2)
O23—Mo3—O15101.52 (18)O5—P1—O6i109.07 (17)
O18—Mo3—O1593.57 (19)O6—P1—O6i110.0 (3)
O13—Mo3—O15150.05 (16)O5—P1—O10109.2 (3)
O23—Mo3—O2496.79 (19)O6—P1—O10109.7 (2)
O18—Mo3—O24161.48 (18)O6i—P1—O10109.73 (17)
O13—Mo3—O2482.49 (15)Mo7—O2—Mo1126.8 (2)
O15—Mo3—O2481.93 (15)P1—O5—Mo6125.3 (3)
O23—Mo3—O6170.30 (17)P1—O5—Mo2i124.66 (14)
O18—Mo3—O685.56 (18)Mo6—O5—Mo2i88.26 (13)
O13—Mo3—O680.13 (13)P1—O5—Mo2124.66 (14)
O15—Mo3—O671.36 (13)Mo6—O5—Mo288.3 (1)
O24—Mo3—O675.96 (13)Mo2i—O5—Mo295.0 (2)
O16—Mo4—O11100.50 (16)P1—O6—Mo1126.6 (2)
O16—Mo4—O11i100.50 (16)P1—O6—Mo3124.6 (2)
O11—Mo4—O11i89.5 (2)Mo1—O6—Mo388.3 (1)
O16—Mo4—O19i102.38 (17)P1—O6—Mo7126.33 (19)
O11—Mo4—O19i157.10 (15)Mo1—O6—Mo788.4 (1)
O11i—Mo4—O19i87.19 (17)Mo3—O6—Mo790.8 (1)
O16—Mo4—O19102.38 (17)Mo2i—O7—Mo2122.0 (2)
O11—Mo4—O1987.19 (17)Mo5—O8—Mo7158.2 (2)
O11i—Mo4—O19157.10 (15)Mo2—O9—Mo6128.5 (2)
O19i—Mo4—O1987.1 (3)P1—O10—Mo4126.8 (3)
O16—Mo4—O10171.3 (2)P1—O10—Mo5i124.79 (14)
O11—Mo4—O1073.51 (12)Mo4—O10—Mo5i88.8 (1)
O11i—Mo4—O1073.51 (12)P1—O10—Mo5124.79 (14)
O19i—Mo4—O1083.83 (13)Mo4—O10—Mo588.8 (1)
O19—Mo4—O1083.83 (13)Mo5i—O10—Mo591.6 (2)
O3—Mo5—O8103.64 (19)Mo4—O11—Mo5126.3 (2)
O3—Mo5—O12103.36 (17)Mo5—O12—Mo6149.0 (2)
O8—Mo5—O1293.95 (16)Mo3—O13—Mo2148.2 (2)
O3—Mo5—O11103.45 (17)Mo2—O14—Mo7149.4 (2)
O8—Mo5—O1193.29 (16)Mo3—O15—Mo1126.9 (2)
O12—Mo5—O11149.68 (16)Mo1—O17—Mo1i156.7 (3)
O3—Mo5—O2195.20 (18)Mo3—O18—Mo3i158.5 (3)
O8—Mo5—O21161.10 (16)Mo4—O19—Mo1147.8 (2)
O12—Mo5—O2182.94 (17)Mo5i—O21—Mo5115.7 (2)
O11—Mo5—O2180.77 (17)Mo7—O24—Mo3116.6 (2)
O3—Mo5—O10170.30 (16)C1—N1—C2112.7 (6)
O8—Mo5—O1085.06 (14)C3—N2—C3ii110.6 (13)
O12—Mo5—O1079.98 (16)C4—N3—C4ii104 (2)
Symmetry codes: (i) x, y1/2, z; (ii) x, y+1/2, z.

Experimental details

Crystal data
Chemical formula(C2H6NH2)4[H4PMo12O40]Cl2·4H2O
Mr2153.62
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)14.9803 (7), 15.0682 (8), 22.6217 (12)
V3)5106.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.09
Crystal size (mm)0.45 × 0.25 × 0.20
Data collection
DiffractometerSMART CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.308, 0.638
No. of measured, independent and
observed [I > 2σ(I)] reflections
16093, 4616, 3868
Rint0.045
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.090, 1.10
No. of reflections4616
No. of parameters346
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.77, 1.45

Computer programs: SMART (Siemens, 1994), SMART and SAINT (Siemens, 1996), XPREP in SHELXTL (Siemens, 1994), SHELXTL.

Selected geometric parameters (Å, º) top
Mo1—O201.668 (4)Mo4—O102.415 (5)
Mo1—O171.893 (1)Mo5—O31.669 (4)
Mo1—O151.930 (4)Mo5—O81.865 (4)
Mo1—O21.941 (4)Mo5—O121.866 (3)
Mo1—O192.026 (4)Mo5—O111.933 (3)
Mo1—O62.406 (3)Mo5—O212.115 (3)
Mo2—O221.672 (4)Mo5—O102.497 (3)
Mo2—O91.866 (4)Mo6—O11.672 (5)
Mo2—O141.881 (4)Mo6—O121.933 (4)
Mo2—O131.949 (4)Mo6—O91.943 (4)
Mo2—O72.096 (2)Mo6—O52.442 (5)
Mo2—O52.486 (3)Mo7—O41.663 (4)
Mo3—O231.678 (4)Mo7—O81.879 (4)
Mo3—O181.869 (1)Mo7—O21.892 (4)
Mo3—O131.873 (4)Mo7—O141.899 (4)
Mo3—O151.896 (4)Mo7—O242.090 (3)
Mo3—O242.104 (4)Mo7—O62.508 (4)
Mo3—O62.505 (3)P1—O51.535 (5)
Mo4—O161.676 (5)P1—O61.545 (4)
Mo4—O111.921 (4)P1—O101.552 (5)
Mo4—O191.958 (4)
O5—P1—O6109.1 (2)Mo4—O10—Mo588.8 (1)
O5—P1—O10109.2 (3)Mo5i—O10—Mo591.6 (2)
O6—P1—O10109.7 (2)Mo4—O11—Mo5126.3 (2)
Mo7—O2—Mo1126.8 (2)Mo5—O12—Mo6149.0 (2)
Mo6—O5—Mo288.3 (1)Mo3—O13—Mo2148.2 (2)
Mo2i—O5—Mo295.0 (2)Mo2—O14—Mo7149.4 (2)
Mo1—O6—Mo388.3 (1)Mo3—O15—Mo1126.9 (2)
Mo1—O6—Mo788.4 (1)Mo1—O17—Mo1i156.7 (3)
Mo3—O6—Mo790.8 (1)Mo3—O18—Mo3i158.5 (3)
Mo2i—O7—Mo2122.0 (2)Mo4—O19—Mo1147.8 (2)
Mo5—O8—Mo7158.2 (2)Mo5i—O21—Mo5115.7 (2)
Mo2—O9—Mo6128.5 (2)Mo7—O24—Mo3116.6 (2)
Mo4—O10—Mo5i88.8 (1)
Symmetry code: (i) x, y1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds