Download citation
Download citation
link to html
The Cu atom in the title compound, [Cu(NO3)(C9H21N3)]ClO4, is coordinated facially by the tridentate tri­aza­cyclo­nonane ligand, and also by a chelating nitrate anion. In addition, the copper makes a sixth much longer interaction [2.828 (3) Å] with an O atom of the perchlorate anion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801008972/cf6061sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801008972/cf6061Isup2.hkl
Contains datablock I

CCDC reference: 170730

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.037
  • wR factor = 0.092
  • Data-to-parameter ratio = 26.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSTM_02 Alert C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.471 0.535 Tmin and Tmax expected: 0.396 0.535 RR = 1.189 Please check that your absorption correction is appropriate. General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 32.59 From the CIF: _reflns_number_total 5357 Count of symmetry unique reflns 3125 Completeness (_total/calc) 171.42% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2232 Fraction of Friedel pairs measured 0.714 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Recent work has reported the synthesis of M8(CN)12 cubes in which the formation of the cubes is directed by the occupation of three facial coordination sites of the octahedral metal ions by `capping' ligands, such as cyclopentadiene or triazacyclononane derivatives (Heinrich et al., 1998; Klausmeyer et al., 1998, 1999). In such work, precursor complexes which contain one such tridentate `capping' ligand and three further accessible coordination sites are important components in the reaction design. We report here the structure of one such complex.

The structure of the title complex, (I), is shown in Fig. 1. It consists of a Cu atom coordinated facially by the tridentate 1,4,7-trimethyl-1,4,7-triazacyclononane ligand, and also by a chelating nitrate anion (Table 1). Although the Cu atom is nominally five-coordinate, it also makes a weak interaction [2.828 (3) Å] with an O atom of the perchlorate anion. An unusual feature of this simple complex is the presence of two different types of counter-anion. This is likely due to crystal packing effects; both the nitrate and the perchlorate participate in a number of weak intermolecular C—H···O contacts with the organic ligands (Table 2).

Experimental top

Blue crystals of the title complex were obtained by slow diffusion of a methanolic solution (15 ml) of sodium perchlorate (0.2 g) into a methanolic solution (15 ml) of copper nitrate (0.4 g) and 1,4,7-trimethyl-1,4,7-triazacyclononane (0.28 g).

Refinement top

The largest residual electron-density peak is 0.84 Å from C4.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted.
Nitrato(1,4,7-trimethyl-1,4,7-triazacyclononane)copper(II) perchlorate top
Crystal data top
[Cu(NO3)(C9H21N3)]ClO4Dx = 1.727 Mg m3
Mr = 396.29Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 18683 reflections
a = 8.5512 (1) Åθ = 2.2–32.6°
b = 11.8172 (1) ŵ = 1.65 mm1
c = 15.0854 (2) ÅT = 173 K
V = 1524.40 (3) Å3Irregular, blue
Z = 40.58 × 0.50 × 0.38 mm
F(000) = 820
Data collection top
Nonius KappaCCD
diffractometer
5357 independent reflections
Radiation source: fine-focus sealed tube5008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 9 pixels mm-1θmax = 32.6°, θmin = 2.2°
ϕ and ω scansh = 1112
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1717
Tmin = 0.471, Tmax = 0.535l = 2222
18613 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0365P)2 + 1.9698P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5357 reflectionsΔρmax = 1.26 e Å3
199 parametersΔρmin = 0.52 e Å3
0 restraintsAbsolute structure: Flack (1983), 2287 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.022 (12)
Crystal data top
[Cu(NO3)(C9H21N3)]ClO4V = 1524.40 (3) Å3
Mr = 396.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.5512 (1) ŵ = 1.65 mm1
b = 11.8172 (1) ÅT = 173 K
c = 15.0854 (2) Å0.58 × 0.50 × 0.38 mm
Data collection top
Nonius KappaCCD
diffractometer
5357 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
5008 reflections with I > 2σ(I)
Tmin = 0.471, Tmax = 0.535Rint = 0.030
18613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.092Δρmax = 1.26 e Å3
S = 1.04Δρmin = 0.52 e Å3
5357 reflectionsAbsolute structure: Flack (1983), 2287 Friedel pairs
199 parametersAbsolute structure parameter: 0.022 (12)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.30811 (3)0.52508 (2)0.68389 (2)0.01707 (6)
C10.0622 (4)0.4439 (3)0.5649 (3)0.0423 (8)
H1A0.10420.41940.50680.051*
H1B0.05290.44890.55940.051*
C20.1018 (4)0.3567 (3)0.6328 (3)0.0391 (7)
H2A0.03170.36670.68440.047*
H2B0.08120.28080.60760.047*
N10.2651 (2)0.36088 (17)0.66366 (14)0.0209 (4)
C30.3819 (4)0.3200 (2)0.5972 (2)0.0347 (6)
H3A0.32900.30830.53960.042*
H3B0.42440.24620.61690.042*
C40.5131 (4)0.4016 (3)0.5854 (2)0.0366 (7)
H4A0.56990.38370.53000.044*
H4B0.58730.39390.63540.044*
N20.4542 (2)0.52076 (18)0.58149 (12)0.0190 (3)
C50.3702 (4)0.5453 (3)0.49849 (17)0.0350 (6)
H5A0.34930.47320.46720.042*
H5B0.43800.59200.45990.042*
C60.2191 (4)0.6058 (3)0.5127 (2)0.0372 (7)
H6A0.24100.68620.52610.045*
H6B0.15720.60300.45730.045*
N30.1248 (3)0.55671 (18)0.58601 (14)0.0217 (4)
C70.2790 (5)0.2954 (2)0.74693 (19)0.0397 (8)
H7A0.25940.21520.73480.060*
H7B0.20230.32320.79000.060*
H7C0.38460.30460.77120.060*
C80.5888 (4)0.5974 (3)0.5937 (2)0.0353 (6)
H8A0.65790.59230.54200.053*
H8B0.64670.57540.64710.053*
H8C0.55130.67530.60010.053*
C90.0079 (4)0.6380 (3)0.6158 (2)0.0378 (7)
H9A0.07050.64870.56920.057*
H9B0.05870.71050.62880.057*
H9C0.04310.60940.66950.057*
N40.2650 (2)0.64862 (17)0.80874 (14)0.0217 (4)
O10.2008 (2)0.55106 (15)0.80114 (11)0.0272 (4)
O20.3491 (2)0.67710 (15)0.74297 (12)0.0253 (4)
O30.2453 (3)0.70790 (18)0.87347 (13)0.0342 (5)
Cl10.69620 (8)0.46211 (5)0.84834 (4)0.02538 (11)
O40.5505 (4)0.4930 (3)0.8089 (2)0.0699 (9)
O50.7523 (4)0.5551 (2)0.90031 (19)0.0525 (7)
O60.8029 (4)0.4361 (3)0.7792 (2)0.0717 (10)
O70.6700 (4)0.3670 (2)0.90447 (17)0.0545 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01792 (11)0.01877 (10)0.01451 (10)0.00223 (10)0.00225 (10)0.00021 (9)
C10.0369 (16)0.0340 (14)0.056 (2)0.0064 (12)0.0219 (15)0.0005 (14)
C20.0288 (14)0.0318 (14)0.057 (2)0.0104 (11)0.0092 (14)0.0054 (14)
N10.0225 (9)0.0175 (8)0.0229 (9)0.0028 (7)0.0008 (7)0.0020 (7)
C30.0391 (15)0.0216 (11)0.0435 (16)0.0030 (10)0.0157 (13)0.0003 (10)
C40.0357 (15)0.0287 (13)0.0455 (17)0.0032 (11)0.0141 (13)0.0011 (12)
N20.0195 (8)0.0198 (8)0.0178 (7)0.0046 (8)0.0036 (6)0.0007 (7)
C50.0334 (14)0.0528 (19)0.0189 (10)0.0055 (13)0.0018 (10)0.0070 (11)
C60.0384 (17)0.0458 (16)0.0273 (13)0.0086 (13)0.0012 (12)0.0147 (12)
N30.0200 (9)0.0233 (9)0.0217 (9)0.0011 (7)0.0009 (7)0.0008 (7)
C70.066 (2)0.0259 (11)0.0277 (12)0.0043 (13)0.0049 (14)0.0081 (10)
C80.0261 (13)0.0516 (18)0.0281 (12)0.0163 (12)0.0049 (11)0.0054 (12)
C90.0251 (13)0.0471 (17)0.0413 (16)0.0115 (12)0.0033 (12)0.0023 (14)
N40.0240 (9)0.0244 (8)0.0165 (8)0.0021 (7)0.0020 (7)0.0008 (7)
O10.0310 (9)0.0270 (8)0.0235 (8)0.0103 (7)0.0079 (8)0.0034 (6)
O20.0306 (10)0.0253 (8)0.0199 (8)0.0046 (7)0.0056 (7)0.0006 (6)
O30.0460 (12)0.0340 (10)0.0226 (9)0.0047 (9)0.0074 (8)0.0099 (8)
Cl10.0271 (3)0.0273 (2)0.0218 (2)0.0020 (2)0.0015 (2)0.00087 (19)
O40.0503 (16)0.088 (2)0.072 (2)0.0142 (16)0.0305 (16)0.0087 (19)
O50.0766 (19)0.0335 (11)0.0473 (14)0.0063 (12)0.0132 (13)0.0095 (10)
O60.0585 (18)0.088 (2)0.0692 (19)0.0136 (18)0.0365 (17)0.0250 (17)
O70.096 (2)0.0320 (11)0.0355 (12)0.0048 (14)0.0047 (15)0.0093 (9)
Geometric parameters (Å, º) top
Cu1—N21.987 (2)C4—N21.497 (4)
Cu1—N11.998 (2)N2—C51.472 (3)
Cu1—O12.016 (2)N2—C81.476 (3)
Cu1—O22.036 (2)C5—C61.492 (5)
Cu1—N32.186 (2)C6—N31.486 (4)
Cu1—N42.411 (2)N3—C91.457 (4)
Cu1—O42.828 (3)N4—O31.213 (3)
C1—N31.472 (4)N4—O21.271 (3)
C1—C21.492 (5)N4—O11.282 (3)
C2—N11.473 (4)Cl1—O61.419 (3)
N1—C71.480 (3)Cl1—O71.425 (2)
N1—C31.495 (4)Cl1—O41.428 (3)
C3—C41.490 (4)Cl1—O51.433 (2)
N2—Cu1—N188.40 (9)C8—N2—C4108.1 (2)
N2—Cu1—O1166.39 (8)C5—N2—Cu1110.4 (2)
N1—Cu1—O1101.43 (8)C8—N2—Cu1112.2 (2)
N2—Cu1—O2104.75 (8)C4—N2—Cu1101.8 (2)
N1—Cu1—O2162.82 (8)N2—C5—C6113.2 (2)
O1—Cu1—O263.89 (7)N3—C6—C5113.0 (2)
N2—Cu1—N385.99 (8)C9—N3—C1114.5 (3)
N1—Cu1—N386.04 (8)C9—N3—C6110.2 (2)
O1—Cu1—N3103.91 (9)C1—N3—C6112.9 (3)
O2—Cu1—N3105.57 (8)C9—N3—Cu1113.3 (2)
N2—Cu1—N4135.96 (8)C1—N3—Cu1104.6 (2)
N1—Cu1—N4132.77 (8)C6—N3—Cu1100.4 (2)
O1—Cu1—N432.11 (7)O3—N4—O2123.6 (2)
O2—Cu1—N431.81 (7)O3—N4—O1122.1 (2)
N3—Cu1—N4108.32 (8)O2—N4—O1114.3 (2)
N3—C1—C2113.2 (3)O3—N4—Cu1177.7 (2)
N1—C2—C1114.1 (3)O2—N4—Cu157.59 (11)
C2—N1—C7109.1 (2)O1—N4—Cu156.71 (11)
C2—N1—C3114.2 (3)N4—O1—Cu191.19 (13)
C7—N1—C3110.3 (2)N4—O2—Cu190.60 (13)
C2—N1—Cu1104.8 (2)O6—Cl1—O7111.5 (2)
C7—N1—Cu1111.3 (2)O6—Cl1—O4108.1 (2)
C3—N1—Cu1107.0 (2)O7—Cl1—O4108.2 (2)
N1—C3—C4112.0 (2)O6—Cl1—O5110.6 (2)
C3—C4—N2111.1 (2)O7—Cl1—O5109.4 (2)
C5—N2—C8111.5 (2)O4—Cl1—O5108.9 (2)
C5—N2—C4112.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1i0.992.563.245 (3)126
C4—H4B···O3ii0.992.633.145 (4)113
C3—H3A···O3i0.992.593.562 (4)166
C5—H5A···O3i0.992.693.672 (4)172
C4—H4A···O5iii0.992.583.477 (4)150
C2—H2A···O6iv0.992.563.506 (5)160
C8—H8A···O7iii0.982.593.547 (4)166
C9—H9A···O7i0.982.633.533 (5)153
C6—H6A···O7v0.992.503.463 (5)165
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1, y1/2, z+3/2; (iii) x+3/2, y+1, z1/2; (iv) x1, y, z; (v) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu(NO3)(C9H21N3)]ClO4
Mr396.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)8.5512 (1), 11.8172 (1), 15.0854 (2)
V3)1524.40 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.65
Crystal size (mm)0.58 × 0.50 × 0.38
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.471, 0.535
No. of measured, independent and
observed [I > 2σ(I)] reflections
18613, 5357, 5008
Rint0.030
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.092, 1.04
No. of reflections5357
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.26, 0.52
Absolute structureFlack (1983), 2287 Friedel pairs
Absolute structure parameter0.022 (12)

Computer programs: COLLECT (Hooft, 1998), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—N21.987 (2)Cu1—N32.186 (2)
Cu1—N11.998 (2)Cu1—N42.411 (2)
Cu1—O12.016 (2)Cu1—O42.828 (3)
Cu1—O22.036 (2)
N2—Cu1—N188.40 (9)O1—Cu1—N3103.91 (9)
N2—Cu1—O1166.39 (8)O2—Cu1—N3105.57 (8)
N1—Cu1—O1101.43 (8)N2—Cu1—N4135.96 (8)
N2—Cu1—O2104.75 (8)N1—Cu1—N4132.77 (8)
N1—Cu1—O2162.82 (8)O1—Cu1—N432.11 (7)
O1—Cu1—O263.89 (7)O2—Cu1—N431.81 (7)
N2—Cu1—N385.99 (8)N3—Cu1—N4108.32 (8)
N1—Cu1—N386.04 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1i0.992.563.245 (3)126
C4—H4B···O3ii0.992.633.145 (4)113
C3—H3A···O3i0.992.593.562 (4)166
C5—H5A···O3i0.992.693.672 (4)172
C4—H4A···O5iii0.992.583.477 (4)150
C2—H2A···O6iv0.992.563.506 (5)160
C8—H8A···O7iii0.982.593.547 (4)166
C9—H9A···O7i0.982.633.533 (5)153
C6—H6A···O7v0.992.503.463 (5)165
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1, y1/2, z+3/2; (iii) x+3/2, y+1, z1/2; (iv) x1, y, z; (v) x+1, y+1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds