Download citation
Download citation
link to html
The title compound, C24H29NO3, has a phase sequence of crystals-smectic A-nematic-isotropic liquid. The molecular length of the compound is 25.323 (9) Å. Intermolecular contacts between two CN groups, between a carbonyl­oxy and a CN group, and between two carbonyl­oxy groups are observed in the crystal state.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801004081/cf6054sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801004081/cf6054Isup2.hkl
Contains datablock I

CCDC reference: 162814

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.071
  • wR factor = 0.303
  • Data-to-parameter ratio = 18.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
RFACR_01 Alert C The value of the weighted R factor is > 0.25 Weighted R factor given 0.303 PLAT_371 Alert C Long C(sp2)-C(sp1) Bond C(1) - C(2) = 1.44 Ang.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

Mesomorphic sequences of 4-cyanophenyl 4-n-alkoxybenzoates (CPnOB) are dependent on the length of the alkoxy chains, i.e. crystals–nematic–isotropic for n = 5–8, crystals–smectic A–nematic–isotropic for n = 9–11, and crystals–smectic A–isotropic for n = 12 (Vill, 2000). The crystal structures of CPnOB with some alkyl chains (n = 4, 5, 6, 7, 8, 12) have been reported (Baumeister et al., 1981; Ibrahim et al., 1995; Iki & Hori, 1995; Kubo & Mori, 2001). We now report the structures of 4-cyanophenyl 4-n-decanyloxybenzoate (CP10OB), to elucidate the relationships between mesomorphic properties and molecular packings of CPnOB in the crystal lattice.

The intersection angle between the least-squares planes A (defined by C2–C7) and B (defined by C9–C14) of CP10OB is 49.6 (2)°, which is similar to those [49.2 and 50.5 (1)°] of CP8OB (Iki & Hori, 1995) and CP12OB (Kubo & Mori, 2001), while that between the least-squares planes B and C (defined by O1/O2/C8) is 8.3 (3)°, which is similar to those (8.3 and 7.9°) of CP8OB and CP12OB. The paraffin chains have all-trans conformations and the molecular length of the compound is 25.323 (9) Å for the N1—C24 distance.

Intermolecular close contact between CN groups of a pair of antiparallel molecules is observed in the crystal lattice. The distance for C1—N1i [symmetry code: (i) 1 - x, 1 - y, -1 - z] is 3.50 (7) Å, which is similar to those (3.486 and 3.514 Å) of CP8OB (Iki & Hori, 1995) and CP12OB (Kubo & Mori, 2001), and shorter than those (3.829 and 3.602 Å) of CP4OB (Ibrahim et al., 1995) and CP6OB (Iki & Hori, 1995). Carbonyloxy groups of another pair of antiparallel molecules are also closely arranged. The distances for O1—O1ii [symmetry code: (ii) 2 - x, 1 - y, -z], O1—O2ii and O1—C8ii are 3.403 (6), 3.578 (5) and 3.508 (7) Å, respectively. In addition, close contacts between a CN and a carbonyloxy group of the other pair of molecules are observed; the distances for C1—O1iii [symmetry code: (iii) 2 - x, 1 - y, -1 - z] and N1—O1iii are 3.565 (7) and 3.794 (7) Å, respectively.

The crystal of CP10OB has a distinct layer structure through infinite networks of the CN···CN interaction, which is similar to those of CP8OB and CP12OB. In conclusion, correlations between crystal structure and mesomorphic properties of CPnOB with different smectic phases have not been found.

Experimental top

The title compound (CP10OB) was prepared by esterification of 4-cyanophenol with 4-n-decanyloxybenzoyl chloride. Single crystals of CP10OB were obtained by recrystallization from ethyl acetate.

Refinement top

All H atoms were located at ideal positions and constrained with Uiso held fixed to 1.2Ueq of the parent atoms.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Xtal_GX (Hall & du Boulay, 1995); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of CP10OB showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram viewed down the a axis. H atoms have been omitted for clarity.
4-Cyanophenyl 4-n-decanyloxybenzoate top
Crystal data top
C24H29NO3Z = 2
Mr = 379.48F(000) = 408
Triclinic, P1Dx = 1.162 Mg m3
a = 10.9982 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.850 (2) ÅCell parameters from 25 reflections
c = 6.7625 (6) Åθ = 8.8–18.1°
α = 96.864 (9)°µ = 0.08 mm1
β = 93.694 (9)°T = 296 K
γ = 81.945 (12)°Prism, colorless
V = 1084.5 (2) Å30.47 × 0.37 × 0.34 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1517 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.079
Graphite monochromatorθmax = 27.0°, θmin = 3.6°
ω–2θ scansh = 1414
Absorption correction: ψ scan
(North et al., 1968)
k = 1818
Tmin = 0.926, Tmax = 1.000l = 08
5095 measured reflections3 standard reflections every 120 min
4695 independent reflections intensity decay: 0.7%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.303H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.1516P)2]
where P = (Fo2 + 2Fc2)/3
4695 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C24H29NO3γ = 81.945 (12)°
Mr = 379.48V = 1084.5 (2) Å3
Triclinic, P1Z = 2
a = 10.9982 (17) ÅMo Kα radiation
b = 14.850 (2) ŵ = 0.08 mm1
c = 6.7625 (6) ÅT = 296 K
α = 96.864 (9)°0.47 × 0.37 × 0.34 mm
β = 93.694 (9)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1517 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.079
Tmin = 0.926, Tmax = 1.0003 standard reflections every 120 min
5095 measured reflections intensity decay: 0.7%
4695 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.303H-atom parameters constrained
S = 0.92Δρmax = 0.35 e Å3
4695 reflectionsΔρmin = 0.43 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.4310 (5)0.4653 (4)0.7411 (8)0.0903 (18)
O10.8982 (4)0.4366 (3)0.1312 (6)0.0811 (14)
O21.0699 (3)0.3369 (2)0.0946 (5)0.0557 (10)
O30.7841 (3)0.2094 (2)0.5610 (5)0.0659 (11)
C11.3670 (5)0.4469 (4)0.6322 (8)0.0595 (15)
C21.2875 (4)0.4210 (3)0.4936 (7)0.0452 (12)
C31.1648 (5)0.4156 (3)0.5480 (8)0.0541 (14)
H31.13390.42900.67400.065*
C41.0883 (4)0.3904 (3)0.4166 (8)0.0530 (14)
H41.00590.38680.45250.064*
C51.1363 (4)0.3706 (3)0.2308 (7)0.0449 (12)
C61.2577 (4)0.3759 (3)0.1754 (8)0.0541 (14)
H61.28830.36190.04970.065*
C71.3337 (5)0.4016 (3)0.3049 (8)0.0547 (14)
H71.41560.40610.26680.066*
C80.9525 (5)0.3743 (3)0.0512 (7)0.0497 (13)
C90.9067 (4)0.3282 (3)0.1030 (7)0.0435 (12)
C100.7958 (5)0.3650 (3)0.1836 (8)0.0538 (14)
H100.75060.41580.13350.065*
C110.7508 (4)0.3277 (3)0.3376 (7)0.0516 (13)
H110.67650.35350.39170.062*
C120.8174 (4)0.2519 (3)0.4094 (7)0.0494 (13)
C130.9266 (5)0.2127 (3)0.3245 (8)0.0586 (15)
H130.96960.15980.36900.070*
C140.9713 (4)0.2517 (3)0.1752 (7)0.0498 (13)
H141.04600.22620.12220.060*
C150.6759 (4)0.2465 (3)0.6631 (7)0.0540 (14)
H15A0.60450.24840.57110.065*
H15B0.68260.30820.72440.065*
C160.6644 (5)0.1847 (3)0.8201 (8)0.0560 (14)
H16A0.73520.18550.91330.067*
H16B0.66440.12250.75710.067*
C170.5486 (4)0.2131 (4)0.9333 (7)0.0543 (14)
H17A0.47810.21360.83950.065*
H17B0.54960.27500.99800.065*
C180.5339 (5)0.1506 (3)1.0900 (8)0.0561 (14)
H18A0.53560.08851.02520.067*
H18B0.60380.15131.18490.067*
C190.4179 (5)0.1752 (4)1.2028 (8)0.0601 (15)
H19A0.34790.17651.10780.072*
H19B0.41740.23641.27170.072*
C200.4023 (5)0.1106 (4)1.3533 (8)0.0620 (15)
H20A0.40540.04921.28460.074*
H20B0.47140.11071.45000.074*
C210.2865 (5)0.1322 (4)1.4627 (9)0.0694 (16)
H21A0.21730.13081.36650.083*
H21B0.28250.19401.52940.083*
C220.2732 (5)0.0682 (4)1.6161 (9)0.0740 (18)
H22A0.27590.00651.54880.089*
H22B0.34340.06871.71050.089*
C230.1588 (6)0.0901 (5)1.7294 (11)0.104 (3)
H23A0.15470.15241.79320.125*
H23B0.08860.08751.63550.125*
C240.1481 (8)0.0293 (5)1.8831 (13)0.128 (3)
H24A0.07190.04801.94730.192*
H24B0.21540.03301.98030.192*
H24C0.15030.03261.82170.192*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.083 (4)0.139 (5)0.062 (4)0.050 (3)0.012 (3)0.021 (3)
O10.076 (3)0.094 (3)0.078 (3)0.017 (2)0.025 (2)0.052 (3)
O20.054 (2)0.065 (2)0.053 (2)0.0008 (17)0.0133 (18)0.0301 (18)
O30.066 (2)0.075 (3)0.064 (3)0.0018 (19)0.019 (2)0.038 (2)
C10.062 (4)0.076 (4)0.045 (3)0.025 (3)0.002 (3)0.009 (3)
C20.050 (3)0.049 (3)0.040 (3)0.012 (2)0.010 (2)0.004 (2)
C30.057 (3)0.067 (3)0.040 (3)0.010 (3)0.001 (3)0.016 (3)
C40.045 (3)0.071 (4)0.047 (3)0.014 (3)0.001 (3)0.016 (3)
C50.052 (3)0.048 (3)0.039 (3)0.004 (2)0.011 (2)0.016 (2)
C60.049 (3)0.072 (4)0.045 (3)0.008 (3)0.002 (3)0.024 (3)
C70.045 (3)0.066 (3)0.055 (4)0.011 (2)0.001 (3)0.012 (3)
C80.056 (3)0.052 (3)0.043 (3)0.007 (3)0.002 (3)0.012 (3)
C90.048 (3)0.045 (3)0.041 (3)0.009 (2)0.003 (2)0.014 (2)
C100.054 (3)0.057 (3)0.052 (3)0.002 (2)0.006 (3)0.019 (3)
C110.053 (3)0.055 (3)0.048 (3)0.003 (2)0.013 (3)0.009 (3)
C120.052 (3)0.054 (3)0.048 (3)0.014 (2)0.008 (3)0.016 (3)
C130.054 (3)0.058 (3)0.067 (4)0.001 (3)0.012 (3)0.027 (3)
C140.049 (3)0.056 (3)0.047 (3)0.003 (2)0.011 (2)0.017 (3)
C150.055 (3)0.066 (3)0.047 (3)0.016 (3)0.008 (3)0.016 (3)
C160.065 (3)0.063 (3)0.047 (3)0.017 (3)0.008 (3)0.018 (3)
C170.058 (3)0.070 (3)0.040 (3)0.017 (3)0.001 (3)0.020 (3)
C180.058 (3)0.062 (3)0.053 (3)0.009 (2)0.012 (3)0.018 (3)
C190.063 (3)0.069 (4)0.052 (3)0.009 (3)0.010 (3)0.018 (3)
C200.062 (4)0.064 (4)0.064 (4)0.007 (3)0.017 (3)0.016 (3)
C210.066 (4)0.086 (4)0.059 (4)0.001 (3)0.021 (3)0.024 (3)
C220.080 (4)0.081 (4)0.068 (4)0.014 (3)0.026 (3)0.018 (3)
C230.097 (5)0.131 (6)0.094 (5)0.001 (4)0.040 (4)0.053 (5)
C240.158 (8)0.113 (6)0.127 (7)0.031 (5)0.063 (6)0.025 (5)
Geometric parameters (Å, º) top
N1—C11.132 (6)C15—H15A0.970
O1—C81.195 (6)C15—H15B0.970
O2—C81.367 (6)C16—C171.511 (6)
O2—C51.390 (5)C16—H16A0.970
O3—C121.360 (5)C16—H16B0.970
O3—C151.424 (5)C17—C181.520 (6)
C1—C21.441 (7)C17—H17A0.970
C2—C31.386 (6)C17—H17B0.970
C2—C71.391 (7)C18—C191.507 (6)
C3—C41.379 (6)C18—H18A0.970
C3—H30.930C18—H18B0.970
C4—C51.379 (6)C19—C201.513 (6)
C4—H40.930C19—H19A0.970
C5—C61.373 (6)C19—H19B0.970
C6—C71.369 (6)C20—C211.490 (7)
C6—H60.930C20—H20A0.970
C7—H70.930C20—H20B0.970
C8—C91.465 (6)C21—C221.515 (7)
C9—C141.377 (6)C21—H21A0.970
C9—C101.382 (6)C21—H21B0.970
C10—C111.385 (6)C22—C231.492 (8)
C10—H100.930C22—H22A0.970
C11—C121.376 (6)C22—H22B0.970
C11—H110.930C23—C241.475 (8)
C12—C131.387 (7)C23—H23A0.970
C13—C141.371 (6)C23—H23B0.970
C13—H130.930C24—H24A0.960
C14—H140.930C24—H24B0.960
C15—C161.507 (6)C24—H24C0.960
C8—O2—C5122.3 (4)C15—C16—H16B109.1
C12—O3—C15119.5 (4)C17—C16—H16B109.1
N1—C1—C2178.4 (7)H16A—C16—H16B107.9
C3—C2—C7119.9 (4)C16—C17—C18113.3 (4)
C3—C2—C1120.1 (5)C16—C17—H17A108.9
C7—C2—C1120.0 (5)C18—C17—H17A108.9
C4—C3—C2120.4 (5)C16—C17—H17B108.9
C4—C3—H3119.8C18—C17—H17B108.9
C2—C3—H3119.8H17A—C17—H17B107.7
C5—C4—C3118.7 (5)C19—C18—C17114.9 (4)
C5—C4—H4120.6C19—C18—H18A108.5
C3—C4—H4120.6C17—C18—H18A108.5
C6—C5—C4121.3 (4)C19—C18—H18B108.5
C6—C5—O2115.4 (4)C17—C18—H18B108.5
C4—C5—O2123.1 (4)H18A—C18—H18B107.5
C7—C6—C5120.2 (5)C18—C19—C20114.4 (4)
C7—C6—H6119.9C18—C19—H19A108.7
C5—C6—H6119.9C20—C19—H19A108.7
C6—C7—C2119.5 (5)C18—C19—H19B108.7
C6—C7—H7120.2C20—C19—H19B108.7
C2—C7—H7120.2H19A—C19—H19B107.6
O1—C8—O2122.7 (4)C21—C20—C19115.4 (4)
O1—C8—C9126.5 (5)C21—C20—H20A108.4
O2—C8—C9110.8 (4)C19—C20—H20A108.4
C14—C9—C10118.8 (4)C21—C20—H20B108.4
C14—C9—C8122.7 (4)C19—C20—H20B108.4
C10—C9—C8118.4 (4)H20A—C20—H20B107.5
C9—C10—C11121.2 (5)C20—C21—C22114.8 (5)
C9—C10—H10119.4C20—C21—H21A108.6
C11—C10—H10119.4C22—C21—H21A108.6
C12—C11—C10119.1 (5)C20—C21—H21B108.6
C12—C11—H11120.5C22—C21—H21B108.6
C10—C11—H11120.5H21A—C21—H21B107.5
O3—C12—C11124.9 (5)C23—C22—C21115.4 (5)
O3—C12—C13115.2 (5)C23—C22—H22A108.4
C11—C12—C13120.0 (4)C21—C22—H22A108.4
C14—C13—C12120.2 (5)C23—C22—H22B108.4
C14—C13—H13119.9C21—C22—H22B108.4
C12—C13—H13119.9H22A—C22—H22B107.5
C13—C14—C9120.6 (5)C24—C23—C22115.2 (6)
C13—C14—H14119.7C24—C23—H23A108.5
C9—C14—H14119.7C22—C23—H23A108.5
O3—C15—C16106.6 (4)C24—C23—H23B108.5
O3—C15—H15A110.4C22—C23—H23B108.5
C16—C15—H15A110.4H23A—C23—H23B107.5
O3—C15—H15B110.4C23—C24—H24A109.5
C16—C15—H15B110.4C23—C24—H24B109.5
H15A—C15—H15B108.6H24A—C24—H24B109.5
C15—C16—C17112.4 (4)C23—C24—H24C109.5
C15—C16—H16A109.1H24A—C24—H24C109.5
C17—C16—H16A109.1H24B—C24—H24C109.5
C7—C2—C3—C40.5 (7)C9—C10—C11—C120.8 (7)
C1—C2—C3—C4179.7 (5)C15—O3—C12—C113.2 (7)
C2—C3—C4—C50.1 (7)C15—O3—C12—C13177.6 (5)
C3—C4—C5—C60.2 (8)C10—C11—C12—O3179.3 (5)
C3—C4—C5—O2174.1 (4)C10—C11—C12—C131.5 (8)
C8—O2—C5—C6138.4 (5)O3—C12—C13—C14177.7 (5)
C8—O2—C5—C447.0 (7)C11—C12—C13—C143.0 (8)
C4—C5—C6—C70.4 (8)C12—C13—C14—C92.2 (8)
O2—C5—C6—C7175.1 (4)C10—C9—C14—C130.1 (7)
C5—C6—C7—C21.0 (8)C8—C9—C14—C13177.8 (5)
C3—C2—C7—C61.0 (7)C12—O3—C15—C16179.9 (4)
C1—C2—C7—C6179.1 (5)O3—C15—C16—C17176.8 (4)
C5—O2—C8—O12.1 (8)C15—C16—C17—C18178.9 (4)
C5—O2—C8—C9177.5 (4)C16—C17—C18—C19178.6 (5)
O1—C8—C9—C14174.2 (5)C17—C18—C19—C20178.0 (5)
O2—C8—C9—C146.2 (7)C18—C19—C20—C21178.4 (5)
O1—C8—C9—C108.0 (8)C19—C20—C21—C22178.8 (5)
O2—C8—C9—C10171.6 (4)C20—C21—C22—C23178.9 (6)
C14—C9—C10—C111.5 (7)C21—C22—C23—C24178.1 (6)
C8—C9—C10—C11176.4 (5)

Experimental details

Crystal data
Chemical formulaC24H29NO3
Mr379.48
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.9982 (17), 14.850 (2), 6.7625 (6)
α, β, γ (°)96.864 (9), 93.694 (9), 81.945 (12)
V3)1084.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.47 × 0.37 × 0.34
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.926, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5095, 4695, 1517
Rint0.079
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.303, 0.92
No. of reflections4695
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.43

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, MolEN (Fair, 1990), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), Xtal_GX (Hall & du Boulay, 1995), SHELXL97.

Selected geometric parameters (Å, º) top
N1—C11.132 (6)O3—C121.360 (5)
O1—C81.195 (6)C1—C21.441 (7)
O2—C81.367 (6)C8—C91.465 (6)
O2—C51.390 (5)
N1—C1—C2178.4 (7)O2—C8—C9110.8 (4)
C8—O2—C5—C447.0 (7)O2—C8—C9—C10171.6 (4)
C5—O2—C8—O12.1 (8)C12—O3—C15—C16179.9 (4)
C5—O2—C8—C9177.5 (4)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds