metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: Di­aqua-1κO,3κO-di-μ-cyanido-1:2κ2N:C;2:3κ2C:N-dicyanido-2κ2C-bis­­{4,4′-di­bromo-2,2′-[propane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato}-1κ4O,N,N′,O′;3κ4O,N,N′,O′-1,3-di­iron(III)-2-nickel(II)

aDepartment of Chemistry and Chemical Engineering, ShanDong Institute of Education, Jinan 250013, People's Republic of China
*Correspondence e-mail: weipeihai@yahoo.com.cn

(Received 9 June 2008; accepted 12 June 2008; online 19 June 2008)

The title compound, [Fe2Ni(C17H14Br2N2O2)2(CN)4(H2O)2] or [{Fe(C17H14Br2N2O2)(H2O)}2(μ-CN)2{Ni(CN)2}], is iso­structural with its MnIII-containing analogue. Each FeIII atom is chelated by a Schiff base ligand via two N and two O atoms and is additionally coordinated by a water mol­ecule, forming a slightly distorted octa­hedral geometry. The two FeIII centres are bridged by a square-planar Ni(CN)4 unit, which lies on an inversion centre. A two-dimensional network is formed via O—H⋯O and O—H⋯N hydrogen bonds.

Related literature

For related literature, see: Kuang et al. (2002[Kuang, S. M., Fanwick, P. E. & Walton, R. A. (2002). Inorg. Chem. 41, 147-151.]); Kuchar et al. (2003[Kuchar, J., Cernak, J., Zak, Z. & Massa, W. (2003). Monogr. Ser. Int. Conf. Coord. Chem. 6, 127-132.]); Yang et al. (2003[Yang, J. Y., Shores, M. P., Sokol, J. J. & Long, J. R. (2003). Inorg. Chem. 42, 1403-1408.]). For the isostructural MnIII-containing compound, see: Sun et al. (2008[Sun, Z.-H., Yang, G.-B., Meng, L.-B. & Chen, S. (2008). Acta Cryst. E64, m783.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2Ni(C17H14Br2N2O2)2(CN)4(H2O)2]

  • Mr = 1186.71

  • Monoclinic, P 21 /n

  • a = 11.599 (2) Å

  • b = 13.538 (3) Å

  • c = 14.715 (3) Å

  • β = 112.04 (3)°

  • V = 2141.8 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.89 mm−1

  • T = 293 (2) K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.449, Tmax = 0.641

  • 13404 measured reflections

  • 3699 independent reflections

  • 2263 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.181

  • S = 1.00

  • 3699 reflections

  • 276 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1W⋯O1i 0.81 (2) 2.09 (4) 2.859 (7) 159 (8)
O3—H2W⋯N2ii 0.81 (2) 2.02 (2) 2.813 (9) 167 (7)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL).

Supporting information


Comment top

Cyanide-bridged oligonuclear complexes with chain-like arrangements of metal ions and cyanide ligands have been studied for a long time due to the good electronic conductivity between the metallic groups (Kuang et al., 2002; Kuchar et al., 2003; Yang et al., 2003). In this context, bulk properties such as magnetism, luminescence, electrical conductivity resulting from metal-metal charge transfer like multi-redox steps, mixed valence and long-range electronic interactions prompted us to report our research work on cyanide-bridged complexes. In this paper, we report the structure of the title compound, (I). It is isostructural with its MnIII-containing analogue (Sun et al., 2008).

As shown in Fig. 1, each FeIII atom is chelated by a Schiff base ligand via two N and two O atoms and is additionally coordinated by a water molecule, forming a slightly distorted octahedral geometry. The Schiff base lies in the equatorial plane, and the cyanido and aqua ligands lie in the axial coordination sites. The Fe—N and Fe—O axial bond lengths are much longer than the equatorial ones. A centrosymmetric square-planar Ni(CN)4 unit links two FeIII centres. With O—H···O and O—H···N hydrogen bonds, a two-dimensional network is formed, as shown in Fig. 2.

Related literature top

For related literature, see: Kuang et al. (2002); Kuchar et al. (2003); Yang et al. (2003). For the isostructural MnIII-containing compound, see: Sun et al. (2008).

Experimental top

A mixture of iron(III) acetylacetonate (1 mmol), N,N'-bis(2-hydroxy-5-bromobenzyl)-1,2-diaminopropane (1 mmol), and dipotassium tetracyanidonickelate(II) (1 mmol) in 20 ml methanol was refluxed for several hours. The cooled solution was filtered and the filtrate was kept in an ice box. One week later, brown blocks of (I) were obtained with a yield of 5%. Anal. Calc. for C38H32Br4Fe2N8NiO6: C 38.43, H 2.70, N 9.44%; Found: C 38.40, H 2.63, N 9.39.

Refinement top

All C-bound H atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C). H atoms on the aqua ligand were located in a difference density map and were refined with the distance restraint O—H = 0.82 (1) Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms. [Symmetry code for unlabelled atoms: -x, 2-y, -z.]
[Figure 2] Fig. 2. Two-dimensional network formed by hydrogen bonds (dashed lines).
Diaqua-1κO,3κO-di-µ-cyanido- 1:2κ2N:C;2:3κ2C:N-dicyanido-2κ2C- bis{4,4'-dibromo-2,2'-[propane-1,2-diylbis(nitrilomethylidyne)]diphenolato}- 1κ4O,N,N',O';3κ4O,N,N', O'-1,3-diiron(III)-2-nickel(II) top
Crystal data top
[Fe2Ni(C17H14Br2N2O2)2(CN)4(H2O)2]F(000) = 1168
Mr = 1186.71Dx = 1.840 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3699 reflections
a = 11.599 (2) Åθ = 3.0–25.1°
b = 13.538 (3) ŵ = 4.89 mm1
c = 14.715 (3) ÅT = 293 K
β = 112.04 (3)°Block, brown
V = 2141.8 (7) Å30.10 × 0.10 × 0.10 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3699 independent reflections
Radiation source: fine-focus sealed tube2263 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
ϕ and ω scansθmax = 25.1°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1312
Tmin = 0.449, Tmax = 0.641k = 1615
13404 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.09P)2]
where P = (Fo2 + 2Fc2)/3
3699 reflections(Δ/σ)max < 0.001
276 parametersΔρmax = 0.96 e Å3
3 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Fe2Ni(C17H14Br2N2O2)2(CN)4(H2O)2]V = 2141.8 (7) Å3
Mr = 1186.71Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.599 (2) ŵ = 4.89 mm1
b = 13.538 (3) ÅT = 293 K
c = 14.715 (3) Å0.10 × 0.10 × 0.10 mm
β = 112.04 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3699 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2263 reflections with I > 2σ(I)
Tmin = 0.449, Tmax = 0.641Rint = 0.085
13404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0663 restraints
wR(F2) = 0.181H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.96 e Å3
3699 reflectionsΔρmin = 0.64 e Å3
276 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.29547 (11)0.95323 (8)0.36728 (8)0.0341 (4)
Ni10.00001.00000.00000.0334 (4)
Br10.07330 (10)1.37221 (7)0.43825 (7)0.0569 (4)
Br20.75936 (10)0.61244 (8)0.30711 (8)0.0621 (4)
C10.1210 (8)0.9936 (5)0.1261 (6)0.035 (2)
C20.0637 (8)0.8804 (6)0.0276 (6)0.037 (2)
C30.2234 (8)1.1459 (6)0.4134 (6)0.034 (2)
C40.2476 (8)1.2492 (5)0.4247 (5)0.033 (2)
H40.32421.27280.42770.039*
C50.1608 (9)1.3146 (6)0.4311 (6)0.042 (2)
H50.17801.38190.43620.050*
C60.0471 (9)1.2807 (6)0.4303 (6)0.042 (2)
C70.0185 (9)1.1818 (6)0.4197 (6)0.045 (2)
H70.05811.16030.41870.054*
C80.1029 (8)1.1136 (5)0.4104 (6)0.037 (2)
C90.0680 (8)1.0105 (6)0.3966 (6)0.035 (2)
H90.00790.99390.40040.042*
C100.0874 (10)0.8350 (7)0.3700 (9)0.067 (3)
H10A0.11540.80440.43430.080*
H10B0.00280.83310.34240.080*
C110.1355 (9)0.7815 (7)0.3082 (9)0.067 (3)
H110.08930.80880.24290.080*
C120.1048 (10)0.6739 (6)0.2961 (8)0.060 (3)
H12A0.15670.63900.35370.091*
H12B0.11880.64910.24000.091*
H12C0.01910.66460.28690.091*
C130.3443 (8)0.7546 (5)0.3198 (5)0.032 (2)
H130.31960.68930.30470.039*
C140.4688 (8)0.7786 (6)0.3302 (5)0.033 (2)
C150.5437 (9)0.7030 (6)0.3193 (5)0.038 (2)
H150.51410.63840.31160.046*
C160.6591 (9)0.7209 (7)0.3197 (6)0.049 (3)
C170.7053 (9)0.8158 (7)0.3289 (6)0.048 (2)
H170.78290.82800.32620.058*
C180.6337 (8)0.8932 (6)0.3422 (6)0.039 (2)
H180.66570.95700.35090.047*
C190.5155 (8)0.8770 (6)0.3428 (5)0.033 (2)
N10.1906 (7)0.9903 (4)0.2063 (5)0.0368 (18)
N20.0938 (7)0.8039 (5)0.0441 (5)0.046 (2)
N30.1306 (6)0.9396 (5)0.3796 (5)0.0400 (18)
N40.2649 (6)0.8131 (4)0.3289 (4)0.0294 (16)
O10.4524 (5)0.9530 (3)0.3561 (4)0.0309 (13)
O20.3095 (5)1.0870 (4)0.4047 (4)0.0308 (13)
O30.3783 (5)0.9024 (4)0.5250 (4)0.0352 (14)
H1W0.433 (5)0.942 (3)0.547 (6)0.042*
H2W0.397 (6)0.8444 (16)0.530 (6)0.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0365 (8)0.0271 (7)0.0247 (6)0.0005 (5)0.0045 (5)0.0009 (5)
Ni10.0368 (9)0.0254 (8)0.0201 (7)0.0002 (6)0.0101 (6)0.0006 (6)
Br10.0723 (8)0.0473 (6)0.0454 (6)0.0242 (5)0.0155 (5)0.0023 (5)
Br20.0537 (7)0.0690 (8)0.0549 (7)0.0211 (5)0.0105 (5)0.0137 (5)
C10.054 (6)0.012 (4)0.029 (5)0.002 (4)0.003 (4)0.000 (3)
C20.036 (5)0.032 (5)0.024 (4)0.002 (4)0.010 (4)0.000 (4)
C30.037 (5)0.029 (4)0.022 (4)0.004 (4)0.007 (4)0.003 (3)
C40.039 (5)0.031 (4)0.018 (4)0.008 (4)0.001 (4)0.001 (3)
C50.060 (7)0.028 (5)0.031 (5)0.011 (5)0.010 (5)0.004 (4)
C60.056 (6)0.026 (5)0.032 (5)0.006 (4)0.005 (4)0.001 (4)
C70.052 (6)0.054 (6)0.022 (4)0.011 (5)0.005 (4)0.006 (4)
C80.044 (6)0.030 (5)0.024 (4)0.009 (4)0.002 (4)0.001 (3)
C90.031 (5)0.038 (5)0.030 (4)0.001 (4)0.004 (4)0.004 (4)
C100.064 (7)0.043 (6)0.104 (9)0.016 (5)0.045 (7)0.025 (6)
C110.047 (7)0.040 (6)0.112 (10)0.004 (5)0.030 (7)0.028 (6)
C120.059 (7)0.039 (5)0.076 (8)0.008 (5)0.017 (6)0.008 (5)
C130.040 (5)0.019 (4)0.027 (4)0.000 (4)0.001 (4)0.001 (3)
C140.034 (5)0.034 (5)0.020 (4)0.009 (4)0.003 (4)0.008 (3)
C150.047 (6)0.038 (5)0.019 (4)0.001 (4)0.001 (4)0.000 (3)
C160.053 (6)0.052 (6)0.025 (5)0.020 (5)0.004 (4)0.009 (4)
C170.043 (6)0.054 (6)0.043 (6)0.001 (5)0.013 (5)0.011 (5)
C180.042 (6)0.045 (5)0.025 (4)0.003 (4)0.006 (4)0.004 (4)
C190.035 (5)0.043 (5)0.010 (4)0.010 (4)0.005 (3)0.003 (3)
N10.042 (4)0.026 (4)0.024 (4)0.007 (3)0.009 (3)0.000 (3)
N20.055 (5)0.029 (4)0.037 (4)0.008 (4)0.001 (4)0.005 (3)
N30.038 (4)0.033 (4)0.043 (4)0.003 (3)0.007 (4)0.011 (3)
N40.028 (4)0.026 (4)0.026 (4)0.000 (3)0.000 (3)0.001 (3)
O10.031 (3)0.028 (3)0.023 (3)0.002 (2)0.001 (2)0.001 (2)
O20.031 (3)0.028 (3)0.025 (3)0.001 (2)0.001 (2)0.001 (2)
O30.040 (4)0.025 (3)0.025 (3)0.004 (3)0.004 (3)0.003 (3)
Geometric parameters (Å, º) top
Fe1—O21.882 (5)C9—H90.930
Fe1—O11.888 (6)C10—C111.430 (13)
Fe1—N41.973 (6)C10—N31.490 (11)
Fe1—N31.996 (7)C10—H10A0.970
Fe1—O32.261 (5)C10—H10B0.970
Fe1—N12.276 (6)C11—N41.478 (11)
Ni1—C1i1.862 (8)C11—C121.494 (11)
Ni1—C11.862 (8)C11—H110.980
Ni1—C21.886 (9)C12—H12A0.960
Ni1—C2i1.886 (9)C12—H12B0.960
Br1—C61.903 (9)C12—H12C0.960
Br2—C161.924 (9)C13—N41.260 (9)
C1—N11.154 (10)C13—C141.431 (11)
C2—N21.148 (9)C13—H130.930
C3—O21.322 (9)C14—C151.390 (11)
C3—C41.423 (10)C14—C191.424 (11)
C3—C81.449 (12)C15—C161.359 (13)
C4—C51.371 (11)C15—H150.930
C4—H40.930C16—C171.378 (12)
C5—C61.393 (13)C17—C181.396 (12)
C5—H50.930C17—H170.930
C6—C71.374 (11)C18—C191.392 (12)
C7—C81.389 (12)C18—H180.930
C7—H70.930C19—O11.318 (9)
C8—C91.445 (10)O3—H1W0.80 (6)
C9—N31.284 (10)O3—H2W0.81 (2)
O2—Fe1—O192.7 (2)N3—C10—H10B109.6
O2—Fe1—N4174.5 (3)H10A—C10—H10B108.2
O1—Fe1—N492.8 (3)C10—C11—N4109.3 (8)
O2—Fe1—N392.5 (2)C10—C11—C12115.9 (10)
O1—Fe1—N3174.6 (2)N4—C11—C12119.0 (8)
N4—Fe1—N382.0 (3)C10—C11—H11103.5
O2—Fe1—O392.1 (2)N4—C11—H11103.5
O1—Fe1—O392.1 (2)C12—C11—H11103.5
N4—Fe1—O387.8 (2)C11—C12—H12A109.5
N3—Fe1—O386.1 (3)C11—C12—H12B109.5
O2—Fe1—N192.7 (2)H12A—C12—H12B109.5
O1—Fe1—N193.8 (2)C11—C12—H12C109.5
N4—Fe1—N186.9 (2)H12A—C12—H12C109.5
N3—Fe1—N187.6 (3)H12B—C12—H12C109.5
O3—Fe1—N1172.3 (2)N4—C13—C14126.5 (7)
C1i—Ni1—C1180.0 (4)N4—C13—H13116.8
C1i—Ni1—C292.6 (3)C14—C13—H13116.8
C1—Ni1—C287.4 (3)C15—C14—C19118.8 (8)
C1i—Ni1—C2i87.4 (3)C15—C14—C13118.0 (7)
C1—Ni1—C2i92.6 (3)C19—C14—C13123.0 (7)
C2—Ni1—C2i180.000 (1)C16—C15—C14121.7 (8)
N1—C1—Ni1176.0 (9)C16—C15—H15119.2
N2—C2—Ni1174.3 (8)C14—C15—H15119.2
O2—C3—C4118.7 (8)C15—C16—C17120.9 (9)
O2—C3—C8124.7 (7)C15—C16—Br2119.5 (7)
C4—C3—C8116.5 (7)C17—C16—Br2119.6 (8)
C5—C4—C3121.7 (8)C16—C17—C18118.9 (9)
C5—C4—H4119.2C16—C17—H17120.5
C3—C4—H4119.2C18—C17—H17120.5
C4—C5—C6120.3 (8)C19—C18—C17121.5 (8)
C4—C5—H5119.9C19—C18—H18119.2
C6—C5—H5119.9C17—C18—H18119.2
C7—C6—C5120.6 (8)O1—C19—C18118.8 (8)
C7—C6—Br1119.4 (7)O1—C19—C14123.0 (8)
C5—C6—Br1119.9 (6)C18—C19—C14118.2 (8)
C6—C7—C8120.7 (9)C1—N1—Fe1165.6 (7)
C6—C7—H7119.7C9—N3—C10122.3 (8)
C8—C7—H7119.7C9—N3—Fe1125.4 (6)
C7—C8—C9119.0 (9)C10—N3—Fe1112.3 (6)
C7—C8—C3120.2 (8)C13—N4—C11121.5 (7)
C9—C8—C3120.8 (7)C13—N4—Fe1125.1 (6)
N3—C9—C8126.9 (8)C11—N4—Fe1113.4 (5)
N3—C9—H9116.6C19—O1—Fe1128.4 (5)
C8—C9—H9116.6C3—O2—Fe1128.5 (5)
C11—C10—N3110.1 (8)Fe1—O3—H1W100 (6)
C11—C10—H10A109.6Fe1—O3—H2W112 (6)
N3—C10—H10A109.6H1W—O3—H2W118 (4)
C11—C10—H10B109.6
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1W···O1ii0.81 (2)2.09 (4)2.859 (7)159 (8)
O3—H2W···N2iii0.81 (2)2.02 (2)2.813 (9)167 (7)
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe2Ni(C17H14Br2N2O2)2(CN)4(H2O)2]
Mr1186.71
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.599 (2), 13.538 (3), 14.715 (3)
β (°) 112.04 (3)
V3)2141.8 (7)
Z2
Radiation typeMo Kα
µ (mm1)4.89
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.449, 0.641
No. of measured, independent and
observed [I > 2σ(I)] reflections
13404, 3699, 2263
Rint0.085
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.181, 1.00
No. of reflections3699
No. of parameters276
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.96, 0.64

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1W···O1i0.81 (2)2.09 (4)2.859 (7)159 (8)
O3—H2W···N2ii0.81 (2)2.02 (2)2.813 (9)167 (7)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors thank the National Ministry of Science and Technology of China (grant No. 2001CB6105–07).

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKuang, S. M., Fanwick, P. E. & Walton, R. A. (2002). Inorg. Chem. 41, 147–151.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKuchar, J., Cernak, J., Zak, Z. & Massa, W. (2003). Monogr. Ser. Int. Conf. Coord. Chem. 6, 127–132.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Z.-H., Yang, G.-B., Meng, L.-B. & Chen, S. (2008). Acta Cryst. E64, m783.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, J. Y., Shores, M. P., Sokol, J. J. & Long, J. R. (2003). Inorg. Chem. 42, 1403–1408.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds