organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(2-hydr­­oxy-3-meth­oxy­benzyl­­idene­amino)phen­yl] ether

aDepartment of Materials and Chemical Engineering, ZhongYuan University of Technology, Zhengzhou, Henan 450007, People's Republic of China
*Correspondence e-mail: hongwuxu2006@126.com

(Received 7 May 2008; accepted 17 May 2008; online 24 May 2008)

The title compound, C28H24N2O5, a flexible Schiff base ligand, was prepared in high yield by a Schiff base condensation of 3-methoxy­salicylaldehyde and bis­(4-amino­phen­yl) ether in methanol. The mol­ecule lies on a twofold rotation axis, and each half exhibits an imine E configuration and an O—H⋯N hydrogen bond. The dihedral angle between the two benzene rings attached to the central O atom is 69.22 (6)°, and that between each of these rings and the other benzene ring in the same half of the mol­ecule is 24.29 (11)°, illustrating the degree of twisting of the flexible mol­ecule.

Related literature

For related literature, see: Chu et al. (2007[Chu, Z. L. & Huang, W. (2007). J. Mol. Struct. 837, 15-22.]); Guo et al. (2002[Guo, D., Pang, K. L., Duan, C. Y., He, C. & Meng, Q. J. (2002). Inorg. Chem. 41, 5978-5985.]); He et al. (2000[He, C., Duan, C. Y., Fang, C. J. & Meng, Q. J. (2000). J. Chem. Soc. Dalton Trans. pp. 2419-2424.]); Tesouro Vallina et al. (2001[Tesouro Vallina, A. & Stoeckli-Evans, H. (2001). Acta Cryst. E57, m59-m61.]); Yoshida et al. (1999[Yoshida, N., Oshio, H. & Ito, T. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 975-983.]).

[Scheme 1]

Experimental

Crystal data
  • C28H24N2O5

  • Mr = 468.49

  • Monoclinic, C 2/c

  • a = 15.585 (7) Å

  • b = 7.578 (4) Å

  • c = 19.859 (9) Å

  • β = 92.760 (8)°

  • V = 2342.7 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 8736 measured reflections

  • 2689 independent reflections

  • 2016 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.166

  • S = 1.11

  • 2689 reflections

  • 165 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H3⋯N1 0.84 1.87 2.611 (2) 147

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Within the field of supramolecular inorganic chemistry, self-assembly is one of the most efficient methods for complex architectures comprising spatially and geometrically well defined arrays of metal ions. Because of easy syntheses by simple one-pot condensation reactions between aldehydes (or ketones) and amines and their coordinating ability with metal ions, multidentate Schiff base ligands such as pyridylimines (He et al., 2000; Guo et al., 2002; Tesouro Vallina et al., 2001) and salicyladimines (Yoshida et al., 1999; Chu et al., 2007) were designed and used to prepare complexes in recent years. Here we report the synthesis and structure of a new flexible Schiff base ligand, bis(N-(3-methoxysalicylidene)-4-aminophenyl) ether. The molecule lies on a twofold rotation axis, and each half exhibits an imine E configuration and an O—H···N hydrogen bond. The dihedral angle between the two benzene rings attached to the central O atom is 69.22 (6)°, and that between each of these rings and the other benzene ring in the same half of the molecule is 24.29 (11)°, illustrating the degree of twisting of the flexible molecule. The bond lengths and angles are in agreement with those reported for other salicyladimines ligands (Chu et al., 2007).

Related literature top

For related literature, see: Chu et al. (2007); Guo et al. (2002); He et al. (2000); Tesouro Vallina et al. (2001); Yoshida et al. (1999).

Experimental top

The title compound was prepared by a Schiff-base condensation of 3-methoxysalicylaldehyde (3.04 g, 20 mmol) and bis(4-aminophenyl) ether (2.02 g, 10 mmol) in methanol (40 ml). The solution was stirred and refluxed for 1 day. The orange precipitate was filtered off, washed with a small amount of methanol and dried in vacuo. Yield: 91%. Well shaped orange crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a chloroform solution of the title compound at room temperature.

Refinement top

H atoms were positioned geometrically (C—H = 0.96 Å; O—H = 0.84 Å), assigned isotropic displacement parameters equal to 1.2Ueq of the parent atoms, and allowed to ride on these parent atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code A: 2-x, y, 3/2-z.]
Bis[4-(2-hydroxy-3-methoxybenzylideneamino)phenyl] ether top
Crystal data top
C28H24N2O5F(000) = 984
Mr = 468.49Dx = 1.328 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.585 (7) ÅCell parameters from 2635 reflections
b = 7.578 (4) Åθ = 1.7–25.1°
c = 19.859 (9) ŵ = 0.09 mm1
β = 92.760 (8)°T = 173 K
V = 2342.7 (19) Å3Prism, colourless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
2016 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 27.5°, θmin = 2.6°
ω scansh = 2019
8736 measured reflectionsk = 99
2689 independent reflectionsl = 2225
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.5764P]
where P = (Fo2 + 2Fc2)/3
2689 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C28H24N2O5V = 2342.7 (19) Å3
Mr = 468.49Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.585 (7) ŵ = 0.09 mm1
b = 7.578 (4) ÅT = 173 K
c = 19.859 (9) Å0.30 × 0.20 × 0.20 mm
β = 92.760 (8)°
Data collection top
Bruker SMART CCD
diffractometer
2016 reflections with I > 2σ(I)
8736 measured reflectionsRint = 0.035
2689 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.15 e Å3
2689 reflectionsΔρmin = 0.14 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.88064 (10)0.0091 (2)0.52377 (7)0.0561 (4)
O11.00000.3717 (3)0.75000.0694 (6)
O20.78593 (9)0.02484 (16)0.41186 (7)0.0660 (4)
H30.81010.02190.44610.079*
C40.91503 (11)0.0853 (3)0.58068 (8)0.0527 (5)
C130.80476 (12)0.1980 (2)0.41092 (9)0.0521 (4)
O30.71769 (10)0.21180 (19)0.31172 (8)0.0739 (5)
C120.77074 (13)0.3000 (2)0.35765 (10)0.0572 (5)
C30.98968 (12)0.0344 (3)0.61733 (9)0.0574 (5)
H81.02100.06590.60360.069*
C60.90099 (13)0.3309 (3)0.65622 (10)0.0610 (5)
H90.87090.43330.66940.073*
C50.87355 (12)0.2368 (3)0.59967 (10)0.0591 (5)
H100.82500.27720.57330.071*
C80.85726 (12)0.2774 (2)0.46152 (10)0.0564 (5)
C21.01805 (12)0.1291 (3)0.67334 (9)0.0581 (5)
H121.06890.09410.69810.070*
C70.89139 (13)0.1765 (3)0.51873 (10)0.0602 (5)
C10.97295 (13)0.2738 (3)0.69341 (9)0.0562 (5)
C110.79102 (15)0.4744 (3)0.35347 (12)0.0718 (6)
H150.76850.54260.31650.086*
C140.66750 (17)0.3156 (3)0.26521 (12)0.0825 (7)
H16A0.63880.40960.28950.124*
H16B0.62430.24080.24180.124*
H16C0.70480.36790.23220.124*
C90.87598 (16)0.4578 (3)0.45639 (12)0.0744 (6)
H170.91100.51380.49050.089*
C100.84410 (17)0.5530 (3)0.40260 (14)0.0825 (7)
H180.85840.67430.39880.099*
H40.9250 (14)0.249 (3)0.5555 (12)0.082 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0574 (9)0.0669 (10)0.0438 (8)0.0043 (8)0.0010 (7)0.0009 (7)
O10.0892 (14)0.0622 (12)0.0554 (11)0.0000.0097 (10)0.000
O20.0793 (10)0.0517 (7)0.0653 (9)0.0103 (7)0.0143 (7)0.0074 (6)
C40.0519 (10)0.0664 (11)0.0400 (9)0.0021 (8)0.0041 (7)0.0068 (8)
C130.0562 (10)0.0481 (10)0.0528 (10)0.0019 (8)0.0097 (8)0.0000 (8)
O30.0880 (11)0.0637 (9)0.0679 (9)0.0048 (7)0.0170 (8)0.0087 (7)
C120.0614 (11)0.0546 (11)0.0561 (11)0.0051 (9)0.0081 (9)0.0020 (9)
C30.0554 (10)0.0723 (12)0.0448 (10)0.0124 (9)0.0057 (8)0.0027 (9)
C60.0654 (12)0.0565 (11)0.0610 (12)0.0098 (9)0.0007 (10)0.0014 (9)
C50.0557 (11)0.0639 (11)0.0566 (11)0.0071 (9)0.0074 (9)0.0077 (9)
C80.0591 (11)0.0536 (10)0.0571 (11)0.0004 (8)0.0091 (9)0.0054 (8)
C20.0528 (10)0.0767 (13)0.0446 (10)0.0101 (9)0.0009 (8)0.0068 (9)
C70.0628 (12)0.0658 (12)0.0521 (11)0.0022 (10)0.0030 (9)0.0116 (9)
C10.0614 (11)0.0625 (11)0.0443 (10)0.0019 (9)0.0013 (8)0.0048 (8)
C110.0819 (15)0.0571 (12)0.0768 (14)0.0050 (11)0.0087 (12)0.0074 (11)
C140.1016 (18)0.0836 (15)0.0610 (13)0.0289 (13)0.0081 (12)0.0036 (11)
C90.0833 (15)0.0583 (12)0.0814 (15)0.0083 (11)0.0010 (12)0.0145 (11)
C100.1018 (18)0.0466 (11)0.0993 (19)0.0044 (12)0.0076 (15)0.0029 (12)
Geometric parameters (Å, º) top
N1—C71.284 (3)C6—C11.382 (3)
N1—C41.421 (2)C6—H90.950
O1—C1i1.394 (2)C5—H100.950
O1—C11.394 (2)C8—C91.402 (3)
O2—C131.345 (2)C8—C71.449 (3)
O2—H30.840C2—C11.372 (3)
C4—C51.379 (3)C2—H120.950
C4—C31.397 (3)C7—H41.04 (2)
C13—C121.394 (3)C11—C101.383 (3)
C13—C81.401 (3)C11—H150.950
O3—C121.375 (2)C14—H16A0.980
O3—C141.419 (2)C14—H16B0.980
C12—C111.363 (3)C14—H16C0.980
C3—C21.379 (3)C9—C101.363 (3)
C3—H80.950C9—H170.950
C6—C51.381 (3)C10—H180.950
C7—N1—C4120.94 (16)C1—C2—C3120.11 (17)
C1i—O1—C1115.8 (2)C1—C2—H12119.9
C13—O2—H3109.5C3—C2—H12119.9
C5—C4—C3118.51 (17)N1—C7—C8122.55 (17)
C5—C4—N1118.23 (16)N1—C7—H4122.3 (12)
C3—C4—N1123.24 (18)C8—C7—H4115.2 (12)
O2—C13—C12118.43 (17)C2—C1—C6120.57 (17)
O2—C13—C8121.98 (16)C2—C1—O1121.33 (16)
C12—C13—C8119.59 (17)C6—C1—O1118.06 (18)
C12—O3—C14117.23 (17)C12—C11—C10120.5 (2)
C11—C12—O3124.41 (18)C12—C11—H15119.8
C11—C12—C13120.21 (19)C10—C11—H15119.8
O3—C12—C13115.39 (17)O3—C14—H16A109.5
C2—C3—C4120.22 (18)O3—C14—H16B109.5
C2—C3—H8119.9H16A—C14—H16B109.5
C4—C3—H8119.9O3—C14—H16C109.5
C5—C6—C1118.99 (19)H16A—C14—H16C109.5
C5—C6—H9120.5H16B—C14—H16C109.5
C1—C6—H9120.5C10—C9—C8120.2 (2)
C4—C5—C6121.44 (17)C10—C9—H17119.9
C4—C5—H10119.3C8—C9—H17119.9
C6—C5—H10119.3C9—C10—C11120.5 (2)
C13—C8—C9118.89 (19)C9—C10—H18119.7
C13—C8—C7121.02 (17)C11—C10—H18119.7
C9—C8—C7120.09 (18)
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H3···N10.841.872.611 (2)147

Experimental details

Crystal data
Chemical formulaC28H24N2O5
Mr468.49
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)15.585 (7), 7.578 (4), 19.859 (9)
β (°) 92.760 (8)
V3)2342.7 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8736, 2689, 2016
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.166, 1.11
No. of reflections2689
No. of parameters165
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.14

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H3···N10.841.872.611 (2)147
 

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChu, Z. L. & Huang, W. (2007). J. Mol. Struct. 837, 15–22.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuo, D., Pang, K. L., Duan, C. Y., He, C. & Meng, Q. J. (2002). Inorg. Chem. 41, 5978–5985.  PubMed Google Scholar
First citationHe, C., Duan, C. Y., Fang, C. J. & Meng, Q. J. (2000). J. Chem. Soc. Dalton Trans. pp. 2419–2424.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTesouro Vallina, A. & Stoeckli-Evans, H. (2001). Acta Cryst. E57, m59–m61.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYoshida, N., Oshio, H. & Ito, T. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 975–983.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds