Download citation
Download citation
link to html
In the title compound, [Cu(C10H9NO3)(C11H16N4)], the CuII atom is five-coordinated in a distorted square-pyramidal geometry. The basal positions are occupied by three donor atoms from the tridentate Schiff base ligand and by one N atom from a 1,1-bis­(3,5-dimethyl­pyrazol-1-yl)methane ligand. The apical position is occupied by the other N atom of this ligand. The asymmetric unit contains two molecules. There are only van der Waals contacts in the crystal packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807043607/cf2130sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807043607/cf2130Isup2.hkl
Contains datablock I

CCDC reference: 663585

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.038
  • wR factor = 0.099
  • Data-to-parameter ratio = 13.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.99 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 100 Deg. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.20 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu2 (2) 2.21
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

Considerable efforts have been devoted to copper(II) complexes of tridentate Schiff base ligands of the N-alkylidene or N-arylidene aminoacidato type due to their structural richness and electrochemical properties as well as their use as a potential model for a number of important biological systems (Raso et al., 1996, 1999). Several stuctural studies have been performed on Schiff base copper(II) complexes derived from salicylaldehyde and animo acids (Reddy et al., 2002; Wang et al., 2005; Warda, 1997, 1998a,b,c). We report here the crystal structure of the title CuII complex.

The structure consists of discrete monomeric square-pyramidal CuII complex (Fig. 1 and Table 1). The basal positions are occupied by three donor atoms from the tridentate Schiff base ligand, which furnishes an ONO donor set, with the fourth position occupied by one N atom from the 1,1-bis(3,5-dimethylprazol-l-yl)methane ligand. The apical position is occupied by the other N atom of this igand.

The two nitrogen heterocycles are planar and lie at angles of 63.87 (10)° and 59.53 (7)° to the plane of the tridentate Schiff base. The two nitrogen heterocycles form a dihedral angle of 58.71 (14)° with each other. There are only van der Waals contacts in the crystal packing.

Related literature top

For related literature, see: Plesch et al. (1997); Raso et al. (1996, 1999); Wang et al. (2005); Warda (1997, 1998a,b,c); Reddy et al. (2002).

Experimental top

The title compound was synthesized as described in the literature (Plesch et al., 1997). To β-alanine (1.0 mmol) and lithium hydroxide monohydrate (1.0 mmol) in 10 ml of methanol was added salicylaldehyde (1.0 mmol in 10 ml of methanol). The yellow solution was stirred for 1 h at room temperature prior to cooling in an ice bath. The resultant mixture was added dropwise to copper(II) acetate monohydrate (1.0 mmol) and 1,1-bis(3,5-dimethylprazol-l-yl)methane (1.0 mmol) in an aqueous methanol solution (20 ml, 1;1 v/v), and heated with stirring for 2 h at 333 K. The dark green solution was filtered and left for several days; the resulting dark blue crystals were filtered off, washed with water, and dried under vacuum. Analysis found: C 54.95, H 5.49, N 15.26%; calculated: C 54.82, H 5.35, N 14.71%.

Refinement top

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å (CH) or 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C), and with C—H = 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C).

Structure description top

Considerable efforts have been devoted to copper(II) complexes of tridentate Schiff base ligands of the N-alkylidene or N-arylidene aminoacidato type due to their structural richness and electrochemical properties as well as their use as a potential model for a number of important biological systems (Raso et al., 1996, 1999). Several stuctural studies have been performed on Schiff base copper(II) complexes derived from salicylaldehyde and animo acids (Reddy et al., 2002; Wang et al., 2005; Warda, 1997, 1998a,b,c). We report here the crystal structure of the title CuII complex.

The structure consists of discrete monomeric square-pyramidal CuII complex (Fig. 1 and Table 1). The basal positions are occupied by three donor atoms from the tridentate Schiff base ligand, which furnishes an ONO donor set, with the fourth position occupied by one N atom from the 1,1-bis(3,5-dimethylprazol-l-yl)methane ligand. The apical position is occupied by the other N atom of this igand.

The two nitrogen heterocycles are planar and lie at angles of 63.87 (10)° and 59.53 (7)° to the plane of the tridentate Schiff base. The two nitrogen heterocycles form a dihedral angle of 58.71 (14)° with each other. There are only van der Waals contacts in the crystal packing.

For related literature, see: Plesch et al. (1997); Raso et al. (1996, 1999); Wang et al. (2005); Warda (1997, 1998a,b,c); Reddy et al. (2002).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2000.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted.
[Figure 2] Fig. 2. A view of the crystal packing along the a axis.
(N-Salicylidene-β-alanine)[1,1-bis(3,5-dimethylpyrazol-1-yl)methane] copper(II) top
Crystal data top
[Cu(C10H9NO3)(C11H16N4)]Z = 4
Mr = 459.00F(000) = 956
Triclinic, P1Dx = 1.458 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1395 (9) ÅCell parameters from 4237 reflections
b = 14.3894 (16) Åθ = 2.3–26.4°
c = 19.271 (2) ŵ = 1.08 mm1
α = 71.760 (1)°T = 273 K
β = 79.411 (1)°Block, dark green
γ = 79.966 (1)°0.30 × 0.30 × 0.25 mm
V = 2090.6 (4) Å3
Data collection top
Bruker SMART CCD
diffractometer
7278 independent reflections
Radiation source: fine-focus sealed tube5692 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 25.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.738, Tmax = 0.774k = 1617
10962 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0416P)2 + 1.188P]
where P = (Fo2 + 2Fc2)/3
7278 reflections(Δ/σ)max = 0.001
549 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cu(C10H9NO3)(C11H16N4)]γ = 79.966 (1)°
Mr = 459.00V = 2090.6 (4) Å3
Triclinic, P1Z = 4
a = 8.1395 (9) ÅMo Kα radiation
b = 14.3894 (16) ŵ = 1.08 mm1
c = 19.271 (2) ÅT = 273 K
α = 71.760 (1)°0.30 × 0.30 × 0.25 mm
β = 79.411 (1)°
Data collection top
Bruker SMART CCD
diffractometer
7278 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5692 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 0.774Rint = 0.021
10962 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.03Δρmax = 0.28 e Å3
7278 reflectionsΔρmin = 0.32 e Å3
549 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.58096 (4)0.58610 (3)0.174452 (19)0.03384 (11)
O10.4334 (3)0.53347 (16)0.26219 (12)0.0476 (6)
O20.6849 (3)0.64875 (15)0.07478 (11)0.0416 (5)
O30.9243 (3)0.6862 (2)0.00468 (14)0.0688 (8)
N10.6090 (3)0.69887 (17)0.20759 (13)0.0343 (5)
N20.8122 (3)0.46820 (18)0.20680 (13)0.0370 (6)
N30.8477 (3)0.39843 (18)0.16911 (13)0.0351 (6)
N40.5103 (3)0.49029 (17)0.12917 (13)0.0333 (5)
N50.6220 (3)0.42616 (17)0.09848 (13)0.0332 (5)
C10.4029 (4)0.5579 (2)0.32336 (16)0.0385 (7)
C20.3138 (4)0.4978 (2)0.38614 (18)0.0502 (9)
H20.27840.44120.38320.060*
C30.2780 (5)0.5211 (3)0.45176 (19)0.0582 (10)
H30.22050.47940.49260.070*
C40.3261 (5)0.6054 (3)0.45813 (19)0.0610 (10)
H40.30060.62060.50270.073*
C50.4110 (4)0.6656 (3)0.39841 (18)0.0483 (8)
H50.44270.72250.40260.058*
C60.4524 (3)0.6442 (2)0.33040 (16)0.0355 (7)
C70.5474 (4)0.7100 (2)0.27160 (16)0.0371 (7)
H70.56680.76690.28030.045*
C80.7002 (4)0.7775 (2)0.15535 (17)0.0395 (7)
H8A0.73130.81740.18200.047*
H8B0.62660.81970.12060.047*
C90.8570 (4)0.7367 (2)0.11345 (17)0.0403 (7)
H9A0.92380.68880.14860.048*
H9B0.92350.79000.08680.048*
C100.8223 (4)0.6881 (2)0.05944 (17)0.0399 (7)
C110.8719 (4)0.4232 (2)0.27010 (17)0.0410 (7)
C120.9458 (4)0.3281 (2)0.27292 (18)0.0491 (8)
H120.99840.28330.31120.059*
C130.9267 (4)0.3126 (2)0.20848 (17)0.0423 (7)
C140.8011 (3)0.4254 (2)0.09625 (15)0.0356 (7)
H14A0.86270.37890.07060.043*
H14B0.83220.49030.06880.043*
C150.5418 (4)0.3773 (2)0.06804 (15)0.0359 (7)
C160.3739 (4)0.4101 (2)0.07960 (17)0.0403 (7)
H160.28670.39020.06470.048*
C170.3592 (3)0.4794 (2)0.11823 (16)0.0345 (7)
C180.2039 (4)0.5365 (3)0.1456 (2)0.0518 (9)
H18A0.17350.50670.19740.078*
H18B0.11370.53650.11970.078*
H18C0.22420.60310.13720.078*
C190.6310 (4)0.3002 (2)0.03268 (18)0.0513 (9)
H19A0.73000.32340.00080.077*
H19B0.55750.28660.00440.077*
H19C0.66290.24100.07020.077*
C200.9746 (5)0.2231 (2)0.1821 (2)0.0609 (10)
H20A0.87460.19800.17970.091*
H20B1.04060.17350.21570.091*
H20C1.03940.24020.13400.091*
C210.8604 (5)0.4779 (3)0.32599 (19)0.0625 (10)
H21A0.86390.54690.30120.094*
H21B0.95340.45280.35370.094*
H21C0.75660.46900.35880.094*
Cu20.21027 (4)0.07442 (3)0.707187 (19)0.03530 (11)
O40.1065 (3)0.00959 (16)0.80327 (12)0.0508 (6)
O50.3530 (3)0.14150 (15)0.61784 (12)0.0445 (5)
O60.3500 (4)0.1832 (2)0.49747 (15)0.0931 (10)
N60.0558 (3)0.19775 (18)0.70325 (14)0.0384 (6)
N70.3991 (3)0.04190 (17)0.72357 (13)0.0359 (6)
N80.4269 (3)0.10560 (17)0.68146 (13)0.0354 (6)
N90.0951 (3)0.00214 (19)0.64183 (14)0.0412 (6)
N100.2008 (3)0.06555 (18)0.60895 (14)0.0408 (6)
C220.0234 (4)0.0411 (2)0.84367 (17)0.0419 (7)
C230.0794 (4)0.0222 (3)0.91284 (19)0.0548 (9)
H230.02410.08590.92800.066*
C240.2142 (5)0.0080 (3)0.95840 (19)0.0603 (10)
H240.24790.03551.00400.072*
C250.3012 (4)0.1020 (3)0.9380 (2)0.0607 (10)
H250.39250.12160.96930.073*
C260.2507 (4)0.1650 (3)0.8713 (2)0.0504 (9)
H260.30850.22820.85750.061*
C270.1127 (4)0.1372 (2)0.82239 (17)0.0397 (7)
C280.0660 (4)0.2086 (2)0.75413 (18)0.0422 (7)
H280.13100.27000.74550.051*
C290.0811 (4)0.2820 (2)0.63729 (18)0.0485 (8)
H29A0.17410.31370.64060.058*
H29B0.01940.32980.63510.058*
C300.1183 (4)0.2501 (2)0.56744 (18)0.0491 (8)
H30A0.02990.21300.56700.059*
H30B0.11500.30850.52520.059*
C310.2861 (4)0.1879 (2)0.5588 (2)0.0490 (8)
C320.4749 (4)0.0889 (2)0.78276 (16)0.0400 (7)
C330.5498 (4)0.1817 (2)0.77863 (17)0.0458 (8)
H330.61060.22850.81320.055*
C340.5175 (4)0.1916 (2)0.71435 (17)0.0421 (7)
C350.3806 (4)0.0713 (2)0.60784 (16)0.0399 (7)
H35A0.43910.11580.58000.048*
H35B0.41580.00660.58310.048*
C360.1155 (5)0.1129 (3)0.57916 (18)0.0500 (8)
C370.0493 (5)0.0793 (3)0.59379 (19)0.0563 (10)
H370.13950.09790.58010.068*
C380.0586 (4)0.0117 (2)0.63313 (17)0.0460 (8)
C390.4752 (5)0.0416 (3)0.84147 (19)0.0584 (10)
H39A0.36680.04190.87130.088*
H39B0.49910.02510.81910.088*
H39C0.55990.07770.87190.088*
C400.5618 (5)0.2776 (3)0.6837 (2)0.0649 (11)
H40A0.62260.25720.63490.097*
H40B0.46060.30170.68170.097*
H40C0.63070.32890.71480.097*
C410.2082 (4)0.0455 (3)0.6650 (2)0.0626 (10)
H41A0.19360.11420.64890.094*
H41B0.21950.02210.71790.094*
H41C0.30780.03700.64870.094*
C420.2024 (6)0.1860 (3)0.5398 (2)0.0785 (13)
H42A0.12010.21350.52500.118*
H42B0.26820.23770.57210.118*
H42C0.27500.15380.49690.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0376 (2)0.0323 (2)0.0349 (2)0.00795 (15)0.00134 (15)0.01615 (16)
O10.0608 (14)0.0458 (13)0.0427 (13)0.0227 (11)0.0148 (10)0.0259 (11)
O20.0507 (13)0.0455 (13)0.0336 (11)0.0191 (10)0.0007 (10)0.0145 (10)
O30.0617 (16)0.097 (2)0.0567 (16)0.0254 (15)0.0212 (13)0.0440 (15)
N10.0346 (13)0.0295 (13)0.0404 (14)0.0034 (10)0.0027 (11)0.0139 (11)
N20.0356 (13)0.0414 (15)0.0385 (14)0.0040 (11)0.0030 (11)0.0194 (12)
N30.0348 (13)0.0370 (14)0.0362 (14)0.0029 (11)0.0027 (11)0.0165 (11)
N40.0323 (13)0.0340 (14)0.0376 (14)0.0051 (10)0.0006 (10)0.0177 (11)
N50.0357 (13)0.0326 (14)0.0345 (13)0.0035 (11)0.0020 (10)0.0163 (11)
C10.0379 (16)0.0374 (18)0.0406 (18)0.0018 (13)0.0015 (14)0.0174 (14)
C20.063 (2)0.0390 (19)0.048 (2)0.0130 (16)0.0105 (17)0.0192 (16)
C30.077 (3)0.050 (2)0.041 (2)0.0127 (19)0.0141 (18)0.0141 (17)
C40.086 (3)0.061 (2)0.038 (2)0.011 (2)0.0102 (19)0.0263 (18)
C50.059 (2)0.047 (2)0.045 (2)0.0056 (16)0.0029 (16)0.0253 (16)
C60.0333 (15)0.0375 (17)0.0376 (17)0.0010 (13)0.0021 (13)0.0183 (14)
C70.0384 (16)0.0320 (17)0.0451 (18)0.0022 (13)0.0041 (14)0.0192 (14)
C80.0465 (18)0.0308 (17)0.0442 (18)0.0072 (14)0.0024 (14)0.0161 (14)
C90.0390 (17)0.0402 (18)0.0432 (18)0.0116 (14)0.0002 (14)0.0136 (14)
C100.0428 (18)0.0358 (18)0.0390 (18)0.0015 (14)0.0019 (14)0.0118 (14)
C110.0400 (17)0.048 (2)0.0357 (17)0.0046 (14)0.0038 (14)0.0143 (15)
C120.053 (2)0.046 (2)0.0403 (19)0.0016 (16)0.0098 (16)0.0029 (15)
C130.0433 (18)0.0354 (18)0.0437 (19)0.0035 (14)0.0004 (14)0.0091 (14)
C140.0330 (15)0.0406 (18)0.0350 (16)0.0060 (13)0.0026 (12)0.0170 (14)
C150.0515 (19)0.0305 (16)0.0286 (15)0.0108 (14)0.0057 (13)0.0096 (13)
C160.0460 (18)0.0378 (18)0.0428 (18)0.0151 (14)0.0135 (14)0.0102 (14)
C170.0350 (16)0.0322 (16)0.0351 (16)0.0086 (12)0.0045 (13)0.0060 (13)
C180.0338 (17)0.056 (2)0.065 (2)0.0071 (15)0.0011 (16)0.0211 (18)
C190.068 (2)0.045 (2)0.049 (2)0.0092 (17)0.0047 (17)0.0255 (17)
C200.077 (3)0.037 (2)0.065 (2)0.0064 (18)0.012 (2)0.0153 (18)
C210.075 (3)0.070 (3)0.048 (2)0.003 (2)0.0165 (19)0.0269 (19)
Cu20.0369 (2)0.0303 (2)0.0386 (2)0.00238 (15)0.00030 (16)0.01353 (16)
O40.0543 (14)0.0409 (13)0.0459 (13)0.0047 (10)0.0116 (11)0.0128 (11)
O50.0414 (12)0.0387 (13)0.0503 (14)0.0092 (10)0.0020 (10)0.0107 (11)
O60.110 (2)0.100 (2)0.0443 (17)0.0131 (19)0.0170 (16)0.0155 (16)
N60.0402 (14)0.0340 (14)0.0420 (15)0.0008 (11)0.0076 (12)0.0136 (12)
N70.0374 (13)0.0344 (14)0.0367 (14)0.0028 (11)0.0001 (11)0.0152 (11)
N80.0386 (13)0.0309 (14)0.0357 (14)0.0014 (11)0.0007 (11)0.0134 (11)
N90.0398 (14)0.0406 (15)0.0460 (16)0.0069 (12)0.0022 (12)0.0174 (13)
N100.0486 (15)0.0388 (15)0.0401 (15)0.0072 (12)0.0071 (12)0.0172 (12)
C220.0420 (18)0.0465 (19)0.0405 (18)0.0009 (15)0.0019 (14)0.0221 (15)
C230.059 (2)0.054 (2)0.045 (2)0.0020 (17)0.0024 (17)0.0157 (17)
C240.063 (2)0.073 (3)0.041 (2)0.005 (2)0.0063 (17)0.0198 (19)
C250.047 (2)0.086 (3)0.054 (2)0.001 (2)0.0048 (17)0.037 (2)
C260.0385 (18)0.060 (2)0.060 (2)0.0059 (16)0.0076 (16)0.0344 (19)
C270.0355 (16)0.0443 (19)0.0461 (19)0.0036 (14)0.0057 (14)0.0236 (15)
C280.0411 (17)0.0375 (18)0.052 (2)0.0031 (14)0.0102 (15)0.0210 (15)
C290.054 (2)0.0316 (18)0.055 (2)0.0013 (15)0.0068 (16)0.0094 (15)
C300.058 (2)0.044 (2)0.0414 (19)0.0116 (16)0.0104 (16)0.0027 (15)
C310.058 (2)0.0383 (19)0.049 (2)0.0148 (16)0.0031 (17)0.0115 (16)
C320.0394 (17)0.0414 (18)0.0370 (17)0.0038 (14)0.0010 (14)0.0113 (14)
C330.0531 (19)0.0360 (18)0.0392 (18)0.0032 (15)0.0052 (15)0.0036 (14)
C340.0483 (18)0.0292 (17)0.0415 (18)0.0023 (14)0.0059 (15)0.0081 (14)
C350.0447 (18)0.0381 (18)0.0370 (17)0.0035 (14)0.0024 (14)0.0164 (14)
C360.069 (2)0.046 (2)0.0407 (19)0.0137 (18)0.0169 (17)0.0115 (16)
C370.070 (3)0.053 (2)0.055 (2)0.0258 (19)0.0263 (19)0.0087 (18)
C380.0466 (19)0.044 (2)0.0429 (19)0.0168 (15)0.0091 (15)0.0009 (15)
C390.075 (3)0.056 (2)0.049 (2)0.0026 (19)0.0186 (19)0.0198 (18)
C400.090 (3)0.038 (2)0.061 (2)0.0075 (19)0.002 (2)0.0203 (18)
C410.043 (2)0.072 (3)0.070 (3)0.0163 (18)0.0062 (18)0.013 (2)
C420.111 (4)0.074 (3)0.072 (3)0.012 (3)0.021 (3)0.046 (2)
Geometric parameters (Å, º) top
Cu1—O11.909 (2)Cu2—O41.905 (2)
Cu1—O21.950 (2)Cu2—O51.965 (2)
Cu1—N11.981 (2)Cu2—N61.977 (2)
Cu1—N42.051 (2)Cu2—N72.053 (2)
Cu1—N22.338 (2)Cu2—N92.311 (2)
O1—C11.302 (3)O4—C221.296 (3)
O2—C101.286 (4)O5—C311.289 (4)
O3—C101.221 (3)O6—C311.218 (4)
N1—C71.291 (4)N6—C281.286 (4)
N1—C81.466 (4)N6—C291.468 (4)
N2—C111.325 (4)N7—C321.330 (4)
N2—N31.377 (3)N7—N81.370 (3)
N3—C131.353 (4)N8—C341.357 (4)
N3—C141.439 (4)N8—C351.446 (4)
N4—C171.329 (3)N9—C381.328 (4)
N4—N51.371 (3)N9—N101.365 (3)
N5—C151.350 (3)N10—C361.353 (4)
N5—C141.449 (3)N10—C351.448 (4)
C1—C21.407 (4)C22—C231.406 (5)
C1—C61.422 (4)C22—C271.418 (4)
C2—C31.375 (4)C23—C241.372 (4)
C2—H20.930C23—H230.930
C3—C41.384 (5)C24—C251.386 (5)
C3—H30.930C24—H240.930
C4—C51.359 (5)C25—C261.358 (5)
C4—H40.930C25—H250.930
C5—C61.408 (4)C26—C271.415 (4)
C5—H50.930C26—H260.930
C6—C71.429 (4)C27—C281.427 (4)
C7—H70.930C28—H280.930
C8—C91.511 (4)C29—C301.518 (4)
C8—H8A0.970C29—H29A0.970
C8—H8B0.970C29—H29B0.970
C9—C101.511 (4)C30—C311.509 (5)
C9—H9A0.970C30—H30A0.970
C9—H9B0.970C30—H30B0.970
C11—C121.385 (4)C32—C331.388 (4)
C11—C211.502 (4)C32—C391.492 (4)
C12—C131.368 (4)C33—C341.367 (4)
C12—H120.930C33—H330.930
C13—C201.494 (4)C34—C401.494 (4)
C14—H14A0.970C35—H35A0.970
C14—H14B0.970C35—H35B0.970
C15—C161.367 (4)C36—C371.353 (5)
C15—C191.495 (4)C36—C421.492 (5)
C16—C171.397 (4)C37—C381.394 (5)
C16—H160.930C37—H370.930
C17—C181.489 (4)C38—C411.493 (5)
C18—H18A0.960C39—H39A0.960
C18—H18B0.960C39—H39B0.960
C18—H18C0.960C39—H39C0.960
C19—H19A0.960C40—H40A0.960
C19—H19B0.960C40—H40B0.960
C19—H19C0.960C40—H40C0.960
C20—H20A0.960C41—H41A0.960
C20—H20B0.960C41—H41B0.960
C20—H20C0.960C41—H41C0.960
C21—H21A0.960C42—H42A0.960
C21—H21B0.960C42—H42B0.960
C21—H21C0.960C42—H42C0.960
O1—Cu1—O2167.05 (10)O4—Cu2—O5169.07 (10)
O1—Cu1—N192.36 (9)O4—Cu2—N692.37 (10)
O2—Cu1—N191.07 (9)O5—Cu2—N690.98 (10)
O1—Cu1—N488.32 (9)O4—Cu2—N786.25 (9)
O2—Cu1—N485.65 (9)O5—Cu2—N788.24 (9)
N1—Cu1—N4167.45 (9)N6—Cu2—N7167.58 (10)
O1—Cu1—N295.31 (9)O4—Cu2—N997.73 (10)
O2—Cu1—N295.79 (9)O5—Cu2—N991.56 (9)
N1—Cu1—N2105.47 (9)N6—Cu2—N9103.91 (9)
N4—Cu1—N286.93 (9)N7—Cu2—N988.50 (9)
C1—O1—Cu1128.68 (19)C22—O4—Cu2129.5 (2)
C10—O2—Cu1124.47 (19)C31—O5—Cu2119.3 (2)
C7—N1—C8117.1 (2)C28—N6—C29118.0 (3)
C7—N1—Cu1124.5 (2)C28—N6—Cu2124.4 (2)
C8—N1—Cu1118.30 (18)C29—N6—Cu2117.6 (2)
C11—N2—N3104.3 (2)C32—N7—N8105.7 (2)
C11—N2—Cu1133.2 (2)C32—N7—Cu2130.5 (2)
N3—N2—Cu1114.78 (16)N8—N7—Cu2120.62 (18)
C13—N3—N2111.9 (2)C34—N8—N7111.1 (2)
C13—N3—C14129.8 (2)C34—N8—C35128.9 (2)
N2—N3—C14118.2 (2)N7—N8—C35119.4 (2)
C17—N4—N5105.5 (2)C38—N9—N10105.1 (2)
C17—N4—Cu1130.58 (19)C38—N9—Cu2136.6 (2)
N5—N4—Cu1123.80 (17)N10—N9—Cu2117.74 (18)
C15—N5—N4111.2 (2)C36—N10—N9111.8 (3)
C15—N5—C14129.2 (2)C36—N10—C35129.4 (3)
N4—N5—C14119.4 (2)N9—N10—C35118.8 (2)
O1—C1—C2119.3 (3)O4—C22—C23118.9 (3)
O1—C1—C6123.5 (3)O4—C22—C27123.6 (3)
C2—C1—C6117.2 (3)C23—C22—C27117.4 (3)
C3—C2—C1121.3 (3)C24—C23—C22121.3 (3)
C3—C2—H2119.4C24—C23—H23119.3
C1—C2—H2119.4C22—C23—H23119.3
C2—C3—C4121.2 (3)C23—C24—C25121.4 (4)
C2—C3—H3119.4C23—C24—H24119.3
C4—C3—H3119.4C25—C24—H24119.3
C5—C4—C3119.1 (3)C26—C25—C24118.8 (3)
C5—C4—H4120.4C26—C25—H25120.6
C3—C4—H4120.4C24—C25—H25120.6
C4—C5—C6121.7 (3)C25—C26—C27121.9 (3)
C4—C5—H5119.1C25—C26—H26119.0
C6—C5—H5119.1C27—C26—H26119.0
C5—C6—C1119.5 (3)C26—C27—C22119.1 (3)
C5—C6—C7117.6 (3)C26—C27—C28118.2 (3)
C1—C6—C7122.9 (3)C22—C27—C28122.6 (3)
N1—C7—C6126.8 (3)N6—C28—C27127.4 (3)
N1—C7—H7116.6N6—C28—H28116.3
C6—C7—H7116.6C27—C28—H28116.3
N1—C8—C9111.8 (2)N6—C29—C30111.4 (3)
N1—C8—H8A109.2N6—C29—H29A109.3
C9—C8—H8A109.2C30—C29—H29A109.3
N1—C8—H8B109.2N6—C29—H29B109.3
C9—C8—H8B109.2C30—C29—H29B109.3
H8A—C8—H8B107.9H29A—C29—H29B108.0
C8—C9—C10114.0 (3)C31—C30—C29114.4 (3)
C8—C9—H9A108.7C31—C30—H30A108.7
C10—C9—H9A108.7C29—C30—H30A108.7
C8—C9—H9B108.7C31—C30—H30B108.7
C10—C9—H9B108.7C29—C30—H30B108.7
H9A—C9—H9B107.6H30A—C30—H30B107.6
O3—C10—O2123.0 (3)O6—C31—O5123.6 (3)
O3—C10—C9119.9 (3)O6—C31—C30119.1 (3)
O2—C10—C9117.1 (3)O5—C31—C30117.3 (3)
N2—C11—C12111.3 (3)N7—C32—C33110.0 (3)
N2—C11—C21120.0 (3)N7—C32—C39121.5 (3)
C12—C11—C21128.7 (3)C33—C32—C39128.5 (3)
C13—C12—C11106.8 (3)C34—C33—C32107.2 (3)
C13—C12—H12126.6C34—C33—H33126.4
C11—C12—H12126.6C32—C33—H33126.4
N3—C13—C12105.7 (3)N8—C34—C33106.0 (3)
N3—C13—C20123.4 (3)N8—C34—C40123.9 (3)
C12—C13—C20130.9 (3)C33—C34—C40130.0 (3)
N3—C14—N5111.7 (2)N8—C35—N10111.8 (2)
N3—C14—H14A109.3N8—C35—H35A109.3
N5—C14—H14A109.3N10—C35—H35A109.3
N3—C14—H14B109.3N8—C35—H35B109.3
N5—C14—H14B109.3N10—C35—H35B109.3
H14A—C14—H14B107.9H35A—C35—H35B107.9
N5—C15—C16106.6 (2)N10—C36—C37105.8 (3)
N5—C15—C19123.1 (3)N10—C36—C42122.2 (3)
C16—C15—C19130.3 (3)C37—C36—C42131.9 (3)
C15—C16—C17106.4 (3)C36—C37—C38107.3 (3)
C15—C16—H16126.8C36—C37—H37126.3
C17—C16—H16126.8C38—C37—H37126.3
N4—C17—C16110.2 (3)N9—C38—C37109.9 (3)
N4—C17—C18121.1 (3)N9—C38—C41119.8 (3)
C16—C17—C18128.6 (3)C37—C38—C41130.3 (3)
C17—C18—H18A109.5C32—C39—H39A109.5
C17—C18—H18B109.5C32—C39—H39B109.5
H18A—C18—H18B109.5H39A—C39—H39B109.5
C17—C18—H18C109.5C32—C39—H39C109.5
H18A—C18—H18C109.5H39A—C39—H39C109.5
H18B—C18—H18C109.5H39B—C39—H39C109.5
C15—C19—H19A109.5C34—C40—H40A109.5
C15—C19—H19B109.5C34—C40—H40B109.5
H19A—C19—H19B109.5H40A—C40—H40B109.5
C15—C19—H19C109.5C34—C40—H40C109.5
H19A—C19—H19C109.5H40A—C40—H40C109.5
H19B—C19—H19C109.5H40B—C40—H40C109.5
C13—C20—H20A109.5C38—C41—H41A109.5
C13—C20—H20B109.5C38—C41—H41B109.5
H20A—C20—H20B109.5H41A—C41—H41B109.5
C13—C20—H20C109.5C38—C41—H41C109.5
H20A—C20—H20C109.5H41A—C41—H41C109.5
H20B—C20—H20C109.5H41B—C41—H41C109.5
C11—C21—H21A109.5C36—C42—H42A109.5
C11—C21—H21B109.5C36—C42—H42B109.5
H21A—C21—H21B109.5H42A—C42—H42B109.5
C11—C21—H21C109.5C36—C42—H42C109.5
H21A—C21—H21C109.5H42A—C42—H42C109.5
H21B—C21—H21C109.5H42B—C42—H42C109.5

Experimental details

Crystal data
Chemical formula[Cu(C10H9NO3)(C11H16N4)]
Mr459.00
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)8.1395 (9), 14.3894 (16), 19.271 (2)
α, β, γ (°)71.760 (1), 79.411 (1), 79.966 (1)
V3)2090.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.738, 0.774
No. of measured, independent and
observed [I > 2σ(I)] reflections
10962, 7278, 5692
Rint0.021
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.099, 1.03
No. of reflections7278
No. of parameters549
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.32

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2000), SHELXTL (Sheldrick, 2000.

Selected geometric parameters (Å, º) top
Cu1—O11.909 (2)Cu1—N42.051 (2)
Cu1—O21.950 (2)Cu1—N22.338 (2)
Cu1—N11.981 (2)
O1—Cu1—O2167.05 (10)N1—Cu1—N4167.45 (9)
O1—Cu1—N192.36 (9)O1—Cu1—N295.31 (9)
O2—Cu1—N191.07 (9)O2—Cu1—N295.79 (9)
O1—Cu1—N488.32 (9)N1—Cu1—N2105.47 (9)
O2—Cu1—N485.65 (9)N4—Cu1—N286.93 (9)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds