Download citation
Download citation
link to html
The crystal structure of (R,R)-N-methyltartramic acid monohydrate is presented and compared with that of the parent compound, (R,R)-tartaric acid. Despite some conformational differences between the two molecules the packing is very similar, as it is dictated by the carboxyl rather than the amide function. Particular attention is paid to a mediated three-centre hydrogen bond as one of the packing motifs involving the α-hydroxycarboxyl moiety. The stability and geometry of such structures in the gas phase and in solution are examined via theoretical ab initio methods using the RHF/6-311++G** and RHF/6-311++G**/Onsager models, respectively. Liquid media, in particular those of high polarity, are found to stabilize the structures considerably.

Supporting information

cif

Crystallographic Information File (CIF)
Contains datablock mma

fcf

Structure factor file (CIF format)
Contains datablock hoh2

CCDC reference: 134771

Computing details top

Data collection: KM4; cell refinement: KM4; data reduction: DATARED; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: SIEMENS STEREOCHEMICAL WORKSTATION.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
(R,R)-Tartaric Acid Mono (N-Methylamide) Monohydrate top
Crystal data top
C5H9NO5·H2ODx = 1.553 Mg m3
Dm = 1.533 Mg m3
Dm measured by flotation in KI
Mr = 181.15Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 36 reflections
a = 7.301 (1) Åθ = 8.4–14.8°
b = 7.658 (2) ŵ = 0.14 mm1
c = 13.855 (3) ÅT = 293 K
V = 774.6 (3) Å3Prism, transparent
Z = 40.6 × 0.25 × 0.2 mm
F(000) = 384
Data collection top
KM-4
diffractometer
Rint = 0.021
Radiation source: fine-focus sealed tubeθmax = 28.1°, θmin = 2.9°
Graphite monochromatorh = 99
θ–2θ scansk = 010
2066 measured reflectionsl = 018
1875 independent reflections2 standard reflections every 100 reflections
1485 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031Calculated w = 1/[σ2(Fo2) + (0.0445P)2 + 0.0586P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.18 e Å3
1874 reflectionsΔρmin = 0.17 e Å3
129 parametersAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
0 restraintsAbsolute structure parameter: 0.70 (130)
Primary atom site location: structure-invariant direct methods
Crystal data top
C5H9NO5·H2OV = 774.6 (3) Å3
Mr = 181.15Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.301 (1) ŵ = 0.14 mm1
b = 7.658 (2) ÅT = 293 K
c = 13.855 (3) Å0.6 × 0.25 × 0.2 mm
Data collection top
KM-4
diffractometer
Rint = 0.021
2066 measured reflections2 standard reflections every 100 reflections
1875 independent reflections intensity decay: none
1485 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.084Δρmax = 0.18 e Å3
S = 1.07Δρmin = 0.17 e Å3
1874 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
129 parametersAbsolute structure parameter: 0.70 (130)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 1 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2930 (2)0.4182 (2)0.41106 (12)0.0259 (3)
C20.5003 (2)0.4140 (2)0.40321 (11)0.0228 (3)
H20.5490 (2)0.3583 (2)0.45972 (11)0.027*
C30.5602 (2)0.3101 (2)0.31528 (12)0.0239 (3)
H30.5291 (2)0.1897 (2)0.32537 (12)0.029*
C40.7664 (2)0.3249 (2)0.30344 (12)0.0244 (3)
C401.0165 (3)0.3828 (3)0.19197 (15)0.0399 (5)
H4011.0819 (3)0.4648 (3)0.23146 (15)0.048*
H4021.0285 (3)0.4179 (3)0.12574 (15)0.048*
H4031.0652 (3)0.2675 (3)0.20078 (15)0.048*
N40.8254 (2)0.3773 (2)0.21926 (10)0.0326 (4)
H40.7420 (2)0.4135 (2)0.17582 (10)0.039*
O10.2101 (2)0.5480 (2)0.43369 (13)0.0463 (4)
O20.5651 (2)0.5878 (2)0.40023 (9)0.0289 (3)
H2O0.668 (4)0.601 (4)0.443 (2)0.070 (8)*
O30.4658 (2)0.3721 (2)0.23251 (9)0.0321 (3)
H3O0.444 (4)0.284 (4)0.193 (2)0.075 (9)*
O40.8662 (2)0.2838 (2)0.37232 (9)0.0324 (3)
O100.2160 (2)0.2688 (2)0.39214 (9)0.0303 (3)
H100.088 (5)0.279 (4)0.377 (3)0.088 (10)*
O(W)0.1486 (2)0.1173 (2)0.98452 (10)0.0358 (3)
H1W0.047 (4)0.086 (4)1.005 (2)0.056 (8)*
H2W0.138 (5)0.230 (5)0.969 (3)0.098 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0232 (8)0.0306 (9)0.0240 (8)0.0014 (7)0.0001 (6)0.0001 (7)
C20.0219 (7)0.0246 (8)0.0218 (7)0.0011 (6)0.0025 (6)0.0000 (6)
C30.0192 (7)0.0253 (8)0.0270 (8)0.0009 (6)0.0024 (7)0.0023 (6)
C40.0208 (8)0.0232 (8)0.0294 (8)0.0009 (6)0.0012 (6)0.0044 (7)
C400.0295 (9)0.0530 (12)0.0371 (10)0.0018 (9)0.0075 (8)0.0070 (9)
N40.0238 (8)0.0443 (9)0.0296 (8)0.0010 (7)0.0000 (6)0.0033 (7)
O10.0257 (7)0.0388 (8)0.0744 (11)0.0029 (6)0.0065 (7)0.0184 (7)
O20.0253 (6)0.0257 (6)0.0358 (7)0.0029 (5)0.0058 (5)0.0049 (5)
O30.0278 (7)0.0423 (8)0.0262 (6)0.0034 (6)0.0062 (5)0.0059 (6)
O40.0203 (6)0.0462 (7)0.0309 (6)0.0019 (6)0.0017 (5)0.0048 (5)
O100.0219 (6)0.0306 (6)0.0384 (7)0.0012 (5)0.0007 (5)0.0013 (5)
O(W)0.0307 (7)0.0369 (8)0.0398 (7)0.0012 (7)0.0033 (6)0.0097 (6)
Geometric parameters (Å, º) top
C1—O11.205 (2)C40—N41.446 (2)
C1—O101.302 (2)C40—H4010.96
C1—C21.518 (2)C40—H4020.96
C2—O21.413 (2)C40—H4030.96
C2—C31.519 (2)N4—H40.90
C2—H20.96O2—H2O0.96 (3)
C3—O31.419 (2)O3—H3O0.88 (3)
C3—C41.519 (2)O10—H100.96 (3)
C3—H30.96O(W)—H1W0.83 (3)
C4—O41.241 (2)O(W)—H2W0.89 (4)
C4—N41.307 (2)
O1—C1—O10124.1 (2)O4—C4—C3118.7 (2)
O1—C1—C2122.5 (2)N4—C4—C3116.5 (2)
O10—C1—C2113.44 (14)N4—C40—H401110.50 (11)
O2—C2—C1108.42 (13)N4—C40—H402110.24 (10)
O2—C2—C3111.93 (14)H401—C40—H402108.5
C1—C2—C3110.82 (13)N4—C40—H403107.29 (12)
O2—C2—H2108.58 (8)H401—C40—H403110.2
C1—C2—H2108.67 (9)H402—C40—H403110.2
C3—C2—H2108.35 (9)C4—N4—C40124.1 (2)
O3—C3—C4111.66 (14)C4—N4—H4117.94 (10)
O3—C3—C2109.47 (13)C40—N4—H4117.97 (10)
C4—C3—C2109.44 (14)C2—O2—H2O109.8 (19)
O3—C3—H3108.89 (9)C3—O3—H3O110 (2)
C4—C3—H3108.78 (9)C1—O10—H10113 (2)
C2—C3—H3108.54 (9)H1W—O(W)—H2W106 (3)
O4—C4—N4124.8 (2)
O1—C1—C2—O215.7 (2)C1—C2—C3—C4173.93 (13)
O10—C1—C2—O2165.06 (13)O3—C3—C4—O4176.33 (14)
O1—C1—C2—C3138.9 (2)C2—C3—C4—O455.0 (2)
O10—C1—C2—C341.8 (2)O3—C3—C4—N45.1 (2)
O2—C2—C3—O369.9 (2)C2—C3—C4—N4126.4 (2)
C1—C2—C3—O351.3 (2)O4—C4—N4—C404.7 (3)
O2—C2—C3—C452.8 (2)C3—C4—N4—C40173.8 (2)

Experimental details

Crystal data
Chemical formulaC5H9NO5·H2O
Mr181.15
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.301 (1), 7.658 (2), 13.855 (3)
V3)774.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.6 × 0.25 × 0.2
Data collection
DiffractometerKM-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2066, 1875, 1485
Rint0.021
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.084, 1.07
No. of reflections1874
No. of parameters129
Δρmax, Δρmin (e Å3)0.18, 0.17
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter0.70 (130)

Computer programs: KM4, DATARED, SHELXS86 (Sheldrick, 1990), SHELXL93 (Sheldrick, 1993), SIEMENS STEREOCHEMICAL WORKSTATION.

Selected torsion angles (º) top
O1—C1—C2—O215.7 (2)C1—C2—C3—C4173.93 (13)
O10—C1—C2—O2165.06 (13)O3—C3—C4—O4176.33 (14)
O1—C1—C2—C3138.9 (2)C2—C3—C4—O455.0 (2)
O10—C1—C2—C341.8 (2)O3—C3—C4—N45.1 (2)
O2—C2—C3—O369.9 (2)C2—C3—C4—N4126.4 (2)
C1—C2—C3—O351.3 (2)O4—C4—N4—C404.7 (3)
O2—C2—C3—C452.8 (2)C3—C4—N4—C40173.8 (2)
 
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds