organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-(1H-2,3-Di­hydro­naphtho­[1,8-de][1,3,2]di­aza­borinin-2-yl)-1-ethylpyridin-1-ium iodide

crossmark logo

aDepartment of Systems Engineering, Wakayama University, Sakaedani, Wakayama, 640-8510, Japan
*Correspondence e-mail: okuno@wakayama-u.ac.jp

Edited by I. Brito, University of Antofagasta, Chile (Received 13 March 2024; accepted 22 April 2024; online 26 April 2024)

4-EtPyBdanI.

The title compound, C17H17BN3I, is a type of di­aza­borinane featuring substitution at the 1, 2, and 3 positions of the nitro­gen–boron six-membered heterocycle. The organic mol­ecule has a planar structure, the dihedral angle between the pyridyl ring and the fused ring system being 3.46 (4)°. In the crystal, mol­ecules are stacked in a head-to-tail manner. The iodide ion makes close contacts with three organic mol­ecules and supports the alternating stack.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) is a type of di­aza­borinane featuring substitution at 1, 2, and 3 positions in the nitro­gen-boron six-membered heterocycle. Di­aza­borinanes have been found to stabilize organic radicals (LaPorte et al., 2023[LaPorte, A. J., Feldner, J. E., Spies, J. C., Maher, T. J. & Burke, M. D. (2023). Angew. Chem. Int. Ed. 62, e202309566.]). The hydrated polymorph of the title compound was reported by Hashimoto et al. (2024[Hashimoto, S., Miki, S. & Okuno, T. (2024). IUCrData, 9, x240369.]).

[Figure 1]
Figure 1
The title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

The organic unit has a planar structure, with a dihedral angle between the N1/C1—C5 pyridyl ring and the N2/N3/C6–C15/B1 ring system of 3.46 (4)°. The organic unit has the similar structure to those previously reported (Akerman et al., 2011[Akerman, M. P., Robinson, R. S. & Slabber, C. A. (2011). Acta Cryst. E67, o1873.]; Slabber et al., 2011[Slabber, C. A., Grimmer, C., Akerman, M. P. & Robinson, R. S. (2011). Acta Cryst. E67, o1995.]). The ethyl group on the nitro­gen atom has an out-of-plane conformation. In the crystal, the organic unit forms alternating stacks in a head-to-tail manner along the a axis, as shown in Fig. 2[link], where the B1⋯·B1i and B1⋯·B1iii distances are 3.380 (3) and 3.793 (3) Å, respectively [symmetry codes:(i) −x + 1, −y + 1, −z + 1; (iii) −x, −y + 1, −z + 1]. Three kinds of hydrogen bonds occur between the organic unit and the iodide ions, as summarized in Table 1[link], the with iodide ion being surrounded by three organic units. It supports the alternating stacking and connects neighboring stacks.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H5⋯I1 0.81 (2) 2.96 (2) 3.7260 (13) 157.2 (18)
C2—H2⋯I1 0.93 3.16 (1) 4.0483 (14) 161 (1)
N3—H12⋯I1i 0.82 (2) 3.02 (2) 3.7453 (12) 148.7 (18)
C16—H14⋯I1ii 0.97 3.07 (1) 3.8981 (15) 144 (1)
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x, y-1, z].
[Figure 2]
Figure 2
Inter­molecular inter­actions in the title compound [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x, y − 1, z; (iii) −x, −y + 1, −z + 1].

Synthesis and crystallization

The precursor of the title compound, 2-(pyridin-4-yl)-2,3-di­hydro-1H-naphtho­[1,8-de][1,3,2] di­aza­borinine, 4PyBdan, was prepared by condensation of 4-(4,4,5,5-tetra­methyl-1,3,2-dioxaborolan-2-yl)pyridine and 1,8-di­aminona­phthalene. A solution of 4-(4,4,5,5-tetra­methyl-1,3,2-dioxaborolan-2-yl)pyridine (0.20 g, 0.98 mmol) and 1,8-di­aminona­phthalene (0.20 g, 1.3 mmol) in dry toluene (50 ml) was refluxed for 24 h under an argon atmosphere. The solution was concentrated under reduced pressure. The residual solid was purified by column chromatography (SiO2, ethyl acetate) to give a yellow solid of 4PyBdan (0.23 g) in 96% yield. 1H NMR (400 MHz, CDCl3): δ 6.44 (br s, 2H), 6.44 (d, J = 8.2 Hz, 2H), 7.09 (d, J = 8.2 Hz, 2H), 7.15 (t, J = 8.2 Hz, 2H), 7.50 (d, J = 6.0 Hz, 2H), 8.69 (d, J = 6.0 Hz, 2H).

A mixture of 4PyBdan (0.15 g, 0.61 mmol) and iodo­ethane (3.0 ml, 37.7 mmol) in aceto­nitrile (24 ml) was stirred for 14 h under an argon atmosphere. The precipitate was filtered off and dried under vacuum to give the title compound (0.14 g) in 57% yield as a red solid. Single crystals of sufficient quality were obtained by recrystallization from aceto­nitrile.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H17BN3+·I
Mr 401.04
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.0800 (3), 10.6304 (3), 11.0650 (3)
α, β, γ (°) 89.715 (2), 79.711 (3), 89.598 (2)
V3) 819.37 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.95
Crystal size (mm) 0.1 × 0.05 × 0.03
 
Data collection
Diffractometer XtaLAB AFC10 (RCD3): fixed-χ single
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.942, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12190, 4404, 4088
Rint 0.016
(sin θ/λ)max−1) 0.737
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.052, 1.07
No. of reflections 4404
No. of parameters 208
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.78, −0.29
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

4-(1H-2,3-Dihydronaphtho[1,8-de][1,3,2]diazaborinin-2-yl)-1-ethylpyridin-1-ium iodide top
Crystal data top
C17H17BN3+·IZ = 2
Mr = 401.04F(000) = 396
Triclinic, P1Dx = 1.626 Mg m3
a = 7.0800 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6304 (3) ÅCell parameters from 7826 reflections
c = 11.0650 (3) Åθ = 3.8–31.4°
α = 89.715 (2)°µ = 1.95 mm1
β = 79.711 (3)°T = 293 K
γ = 89.598 (2)°Plate, clear red
V = 819.37 (5) Å30.1 × 0.05 × 0.03 mm
Data collection top
XtaLAB AFC10 (RCD3): fixed-χ single
diffractometer
4404 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Mo) X-ray Source4088 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.016
Detector resolution: 10.0000 pixels mm-1θmax = 31.6°, θmin = 3.7°
ω scansh = 710
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 1414
Tmin = 0.942, Tmax = 1.000l = 1515
12190 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.020H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0288P)2 + 0.2552P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.004
4404 reflectionsΔρmax = 0.78 e Å3
208 parametersΔρmin = 0.29 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The positions of the N-bound and the O-bound H atoms were obtained from difference Fourier maps and were refined isotropically. The C-bound H atoms were placed at ideal positions and were refined as riding on their parent C atoms. Uiso(H) values of the H atoms were set at 1.2Ueq(parent atom for Csp2) and 1.5Ueq(parent atom for Csp3).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.41685 (2)0.80629 (2)0.76854 (2)0.03537 (5)
N10.38277 (16)0.22734 (11)0.80569 (10)0.0189 (2)
N20.22902 (17)0.60900 (11)0.53955 (11)0.0206 (2)
N30.24819 (18)0.43530 (12)0.39835 (11)0.0220 (2)
C60.19028 (19)0.69330 (13)0.45019 (12)0.0202 (2)
C40.3287 (2)0.25792 (13)0.60271 (13)0.0221 (3)
H30.31860.22390.52690.026*
C30.30663 (18)0.38741 (12)0.62082 (12)0.0181 (2)
C20.3276 (2)0.43318 (13)0.73619 (13)0.0217 (3)
H20.31510.51890.75220.026*
C10.3666 (2)0.35186 (13)0.82613 (13)0.0219 (3)
H10.38200.38350.90190.026*
C50.3656 (2)0.17955 (13)0.69587 (13)0.0222 (3)
H40.37850.09340.68260.027*
C160.4153 (2)0.14270 (14)0.90731 (13)0.0233 (3)
H130.49770.18410.95590.028*
H140.48010.06670.87330.028*
C150.18123 (18)0.64498 (13)0.33129 (12)0.0197 (2)
C140.2089 (2)0.51456 (14)0.30483 (13)0.0218 (3)
C70.1655 (2)0.82045 (14)0.47347 (14)0.0267 (3)
H60.16930.85150.55140.032*
C100.14939 (19)0.73002 (14)0.23651 (13)0.0232 (3)
C110.1474 (2)0.68118 (17)0.11772 (14)0.0292 (3)
H90.12970.73530.05430.035*
C90.1257 (2)0.85948 (15)0.26407 (14)0.0275 (3)
H80.10400.91570.20330.033*
C80.1343 (2)0.90312 (15)0.37892 (16)0.0299 (3)
H70.11930.98880.39490.036*
C130.2006 (2)0.47006 (16)0.18876 (14)0.0296 (3)
H110.21430.38450.17210.035*
C120.1712 (2)0.55533 (18)0.09582 (14)0.0327 (3)
H100.16800.52500.01750.039*
C170.2286 (2)0.10846 (19)0.98868 (17)0.0362 (4)
H170.15310.05880.94310.054*
H150.15920.18381.01680.054*
H160.25430.06101.05800.054*
B10.2602 (2)0.47939 (14)0.51714 (14)0.0189 (3)
H50.246 (3)0.639 (2)0.604 (2)0.035 (6)*
H120.280 (3)0.365 (2)0.373 (2)0.035 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.06050 (9)0.01998 (6)0.02905 (6)0.00500 (4)0.01733 (5)0.00322 (4)
N10.0171 (5)0.0176 (5)0.0217 (5)0.0001 (4)0.0027 (4)0.0065 (4)
N20.0239 (6)0.0190 (5)0.0187 (5)0.0031 (4)0.0037 (4)0.0041 (4)
N30.0252 (6)0.0176 (5)0.0238 (6)0.0014 (4)0.0063 (4)0.0032 (4)
C60.0177 (6)0.0196 (6)0.0224 (6)0.0025 (5)0.0016 (5)0.0066 (5)
C40.0259 (7)0.0191 (6)0.0216 (6)0.0010 (5)0.0053 (5)0.0034 (5)
C30.0148 (6)0.0175 (6)0.0210 (6)0.0001 (4)0.0007 (4)0.0056 (4)
C20.0251 (7)0.0160 (6)0.0232 (6)0.0015 (5)0.0028 (5)0.0037 (5)
C10.0261 (7)0.0186 (6)0.0210 (6)0.0018 (5)0.0041 (5)0.0019 (5)
C50.0256 (7)0.0148 (6)0.0264 (6)0.0002 (5)0.0049 (5)0.0035 (5)
C160.0238 (7)0.0212 (6)0.0259 (7)0.0008 (5)0.0076 (5)0.0099 (5)
C150.0146 (6)0.0225 (6)0.0210 (6)0.0010 (5)0.0008 (4)0.0067 (5)
C140.0187 (6)0.0241 (7)0.0225 (6)0.0007 (5)0.0041 (5)0.0047 (5)
C70.0313 (8)0.0207 (6)0.0281 (7)0.0047 (5)0.0056 (6)0.0039 (5)
C100.0152 (6)0.0293 (7)0.0242 (6)0.0017 (5)0.0012 (5)0.0107 (5)
C110.0222 (7)0.0418 (9)0.0233 (7)0.0048 (6)0.0037 (5)0.0107 (6)
C90.0224 (7)0.0278 (7)0.0309 (7)0.0028 (6)0.0012 (5)0.0154 (6)
C80.0304 (8)0.0211 (7)0.0372 (8)0.0047 (6)0.0041 (6)0.0097 (6)
C130.0326 (8)0.0308 (8)0.0270 (7)0.0049 (6)0.0100 (6)0.0013 (6)
C120.0317 (8)0.0459 (10)0.0218 (7)0.0072 (7)0.0084 (6)0.0005 (6)
C170.0270 (8)0.0448 (10)0.0364 (8)0.0022 (7)0.0053 (6)0.0246 (7)
B10.0158 (6)0.0184 (6)0.0221 (7)0.0008 (5)0.0026 (5)0.0060 (5)
Geometric parameters (Å, º) top
N1—C11.3446 (18)C16—H140.9700
N1—C51.3452 (19)C16—C171.506 (2)
N1—C161.4855 (16)C15—C141.423 (2)
N2—C61.3930 (16)C15—C101.4283 (18)
N2—B11.4100 (19)C14—C131.382 (2)
N2—H50.81 (2)C7—H60.9300
N3—C141.3961 (17)C7—C81.409 (2)
N3—B11.415 (2)C10—C111.418 (2)
N3—H120.81 (2)C10—C91.413 (2)
C6—C151.427 (2)C11—H90.9300
C6—C71.381 (2)C11—C121.365 (3)
C4—H30.9300C9—H80.9300
C4—C31.3957 (19)C9—C81.367 (2)
C4—C51.3816 (18)C8—H70.9300
C3—C21.4012 (19)C13—H110.9300
C3—B11.5808 (19)C13—C121.410 (2)
C2—H20.9300C12—H100.9300
C2—C11.3786 (18)C17—H170.9600
C1—H10.9300C17—H150.9600
C5—H40.9300C17—H160.9600
C16—H130.9700
C1—N1—C5120.68 (11)C14—C15—C10119.66 (13)
C1—N1—C16118.97 (12)N3—C14—C15117.96 (13)
C5—N1—C16120.33 (12)C13—C14—N3121.88 (14)
C6—N2—B1122.92 (12)C13—C14—C15120.15 (13)
C6—N2—H5116.8 (16)C6—C7—H6120.0
B1—N2—H5119.9 (16)C6—C7—C8119.91 (15)
C14—N3—B1122.71 (13)C8—C7—H6120.0
C14—N3—H12112.2 (16)C11—C10—C15118.47 (14)
B1—N3—H12124.4 (16)C9—C10—C15118.79 (14)
N2—C6—C15117.93 (12)C9—C10—C11122.73 (13)
C7—C6—N2121.80 (13)C10—C11—H9119.8
C7—C6—C15120.25 (12)C12—C11—C10120.44 (14)
C3—C4—H3119.5C12—C11—H9119.8
C5—C4—H3119.5C10—C9—H8119.6
C5—C4—C3120.92 (13)C8—C9—C10120.85 (13)
C4—C3—C2116.81 (12)C8—C9—H8119.6
C4—C3—B1122.23 (12)C7—C8—H7119.5
C2—C3—B1120.96 (12)C9—C8—C7121.07 (15)
C3—C2—H2119.8C9—C8—H7119.5
C1—C2—C3120.39 (13)C14—C13—H11120.2
C1—C2—H2119.8C14—C13—C12119.51 (15)
N1—C1—C2120.87 (13)C12—C13—H11120.2
N1—C1—H1119.6C11—C12—C13121.73 (15)
C2—C1—H1119.6C11—C12—H10119.1
N1—C5—C4120.31 (13)C13—C12—H10119.1
N1—C5—H4119.8C16—C17—H17109.5
C4—C5—H4119.8C16—C17—H15109.5
N1—C16—H13109.4C16—C17—H16109.5
N1—C16—H14109.4H17—C17—H15109.5
N1—C16—C17111.19 (12)H17—C17—H16109.5
H13—C16—H14108.0H15—C17—H16109.5
C17—C16—H13109.4N2—B1—N3117.28 (12)
C17—C16—H14109.4N2—B1—C3121.20 (12)
C6—C15—C10119.13 (13)N3—B1—C3121.51 (12)
C14—C15—C6121.19 (12)
N2—C6—C15—C140.62 (19)C16—N1—C1—C2176.98 (12)
N2—C6—C15—C10177.51 (12)C16—N1—C5—C4177.77 (13)
N2—C6—C7—C8177.40 (14)C15—C6—C7—C81.1 (2)
N3—C14—C13—C12176.41 (14)C15—C14—C13—C122.2 (2)
C6—N2—B1—N30.9 (2)C15—C10—C11—C121.4 (2)
C6—N2—B1—C3179.14 (12)C15—C10—C9—C80.5 (2)
C6—C15—C14—N30.94 (19)C14—N3—B1—N20.5 (2)
C6—C15—C14—C13179.61 (13)C14—N3—B1—C3179.49 (12)
C6—C15—C10—C11177.85 (12)C14—C15—C10—C110.31 (19)
C6—C15—C10—C90.70 (19)C14—C15—C10—C9178.86 (13)
C6—C7—C8—C90.8 (2)C14—C13—C12—C111.1 (3)
C4—C3—C2—C10.5 (2)C7—C6—C15—C14179.15 (13)
C4—C3—B1—N2176.79 (13)C7—C6—C15—C101.0 (2)
C4—C3—B1—N33.2 (2)C10—C15—C14—N3177.18 (12)
C3—C4—C5—N10.7 (2)C10—C15—C14—C131.5 (2)
C3—C2—C1—N10.9 (2)C10—C11—C12—C130.7 (2)
C2—C3—B1—N23.24 (19)C10—C9—C8—C70.5 (2)
C2—C3—B1—N3176.80 (13)C11—C10—C9—C8178.03 (15)
C1—N1—C5—C40.7 (2)C9—C10—C11—C12179.89 (15)
C1—N1—C16—C1784.82 (17)B1—N2—C6—C150.33 (19)
C5—N1—C1—C21.6 (2)B1—N2—C6—C7178.18 (13)
C5—N1—C16—C1793.72 (17)B1—N3—C14—C150.3 (2)
C5—C4—C3—C21.3 (2)B1—N3—C14—C13178.99 (14)
C5—C4—C3—B1178.72 (13)B1—C3—C2—C1179.52 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H5···I10.81 (2)2.96 (2)3.7260 (13)157.2 (18)
C2—H2···I10.933.16 (1)4.0483 (14)161 (1)
N3—H12···I1i0.82 (2)3.02 (2)3.7453 (12)148.7 (18)
C16—H14···I1ii0.973.07 (1)3.8981 (15)144 (1)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z.
 

Acknowledgements

TO gratefully acknowledges the publication supporting fund of Wakayama University.

Funding information

Funding for this research was provided by: Wakayama University.

References

First citationAkerman, M. P., Robinson, R. S. & Slabber, C. A. (2011). Acta Cryst. E67, o1873.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHashimoto, S., Miki, S. & Okuno, T. (2024). IUCrData, 9, x240369.  Google Scholar
First citationLaPorte, A. J., Feldner, J. E., Spies, J. C., Maher, T. J. & Burke, M. D. (2023). Angew. Chem. Int. Ed. 62, e202309566.  CSD CrossRef Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSlabber, C. A., Grimmer, C., Akerman, M. P. & Robinson, R. S. (2011). Acta Cryst. E67, o1995.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146