organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1132

Di­methyl 1-(3-cyano­benz­yl)-1H-pyrazole-3,5-di­carboxyl­ate

aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: zhaohong@seu.edu.cn

(Received 14 April 2009; accepted 22 April 2009; online 25 April 2009)

In the mol­ecule of the title compound, C15H13N3O4, the dihedral angle between the pyrazole and benzene ring planes is 67.7 (1)°. The crystal structure is stabilized by an intra­molecular C—H⋯O hydrogen bond and two weak inter­molecular C—H⋯O inter­actions.

Related literature

For the biological activity of pyrazoles, see: Lee et al. (1989[Lee, H. H., Cain, B. F., Denny, W. A., Buckleton, J. S. & Clark, G. R. (1989). J. Org. Chem. 54, 428-431.]); Chambers et al. (1985[Chambers, D., Denny, W. A., Buckleton, J. S. & Clark, G. R. (1985). J. Org. Chem. 50, 4736-4738.]). For the importance of nitrile derivatives in the synthesis of some heterocyclic mol­ecules, see: Radl et al. (2000[Radl, S., Hezky, P., Konvicka, P. & Krejci, J. (2000). Collect. Czech. Chem. Commun. 65, 1093-1108.]). For related structures, see: Fu & Zhao (2007[Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.]); Xiao & Zhao (2008a[Xiao, J. & Zhao, H. (2008a). Acta Cryst. E64, o965.],b[Xiao, J. & Zhao, H. (2008b). Acta Cryst. E64, o986.],c[Xiao, J. & Zhao, H. (2008c). Acta Cryst. E64, o1436.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O4

  • Mr = 299.28

  • Triclinic, [P \overline 1]

  • a = 8.783 (3) Å

  • b = 9.538 (4) Å

  • c = 9.999 (4) Å

  • α = 68.42 (3)°

  • β = 71.79 (4)°

  • γ = 82.13 (4)°

  • V = 739.7 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 292 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.968, Tmax = 0.979

  • 7555 measured reflections

  • 3338 independent reflections

  • 2093 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.147

  • S = 1.05

  • 3338 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15B⋯O1i 0.96 2.43 3.363 (3) 163
C9—H9⋯O1ii 0.93 2.53 3.348 (3) 147
C6—H6A⋯O4 0.97 2.41 2.979 (3) 117
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL/PC; molecular graphics: SHELXTL/PC; software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

It is well known that many pyrazole-related molecules have received much attention due to their biological activities (Lee et al., 1989; Chambers et al., 1985). In addition, nitrile derivatives are important materials in the synthesis of some heterocyclic molecules (Radl et al., 2000). Recently, we have reported a few benzonitrile compounds (Fu et al., 2007; Xiao et al.,2008a, 2008b,2008c). As an extension of our work on the structural characterization of nitrile compounds, the structure of the title compound is reported here. In the molecule of the title compound (Fig. 1) bond lengths and angles have normal values. The dihedral angle between the planes of the pyrazole and phenyl rings is 67.74 (14) °. The molecular conformation is stabilized by an intramolecular C—H···O hydrogen bond and weak intermolecular C—H···O interactions (Table 1)..

Related literature top

For thebiological activity of pyrazoles, see: Lee et al. (1989); Chambers et al. (1985). For related structures, see: Fu & Zhao (2007); Xiao & Zhao (2008a,b,c). For the importance of nitrile derivatives in the synthesis of some heterocyclic molecules, see: Radl et al. (2000).

Experimental top

Dimethyl 1H-Pyrazole-3,5-dicarboxylate (0.185 mg,1 mmol) and 3-(bromomethyl)benzonitrile (0.196 mg,1 mmol) were dissolved in acetone in the presence of K2CO3 (0.138 mg,1 mmol) and heated under reflux for 1 d. After the mixture was cooled to room temperature, the solution was filtered and the solvent removed in vacuum to afford a white precipitate of the title compound. Colourless crystals suitable for X-ray diffraction were obtained from a solution of 100 mg in 15 ml diethylether by slow evaporation after 7 d.

Refinement top

All H atoms were detected in a difference Fourier map but were placed in calculated positions and refined using a riding motion approximation, with Caryl—H, Cmethylene—H, Cmethyl—H = 0.93, 097 and 0.96 Å. Uiso(Haryl)=1.2Ueq(Caryl); Uiso(Hmethylene)=1.2Ueq(Cmethylene); Uiso(Hmethyl)=1.5Ueq(Cmethyl).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008); program(s) used to refine structure: SHELXTL/PC (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Dimethyl 1-(3-cyanobenzyl)-1H-pyrazole-3,5-dicarboxylate top
Crystal data top
C15H13N3O4Z = 2
Mr = 299.28F(000) = 312
Triclinic, P1Dx = 1.344 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.783 (3) ÅCell parameters from 1442 reflections
b = 9.538 (4) Åθ = 2.4–27.3°
c = 9.999 (4) ŵ = 0.10 mm1
α = 68.42 (3)°T = 292 K
β = 71.79 (4)°Block, colorless
γ = 82.13 (4)°0.40 × 0.30 × 0.20 mm
V = 739.7 (5) Å3
Data collection top
Rigaku SCXmini
diffractometer
3338 independent reflections
Radiation source: fine-focus sealed tube2093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 13.6612 pixels mm-1θmax = 27.4°, θmin = 2.3°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.968, Tmax = 0.979l = 1212
7555 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.0696P]
where P = (Fo2 + 2Fc2)/3
3338 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C15H13N3O4γ = 82.13 (4)°
Mr = 299.28V = 739.7 (5) Å3
Triclinic, P1Z = 2
a = 8.783 (3) ÅMo Kα radiation
b = 9.538 (4) ŵ = 0.10 mm1
c = 9.999 (4) ÅT = 292 K
α = 68.42 (3)°0.40 × 0.30 × 0.20 mm
β = 71.79 (4)°
Data collection top
Rigaku SCXmini
diffractometer
3338 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2093 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.979Rint = 0.031
7555 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
3338 reflectionsΔρmin = 0.16 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2466 (2)0.1608 (2)0.4437 (2)0.0473 (5)
C20.2324 (2)0.0151 (2)0.4487 (2)0.0485 (5)
H20.25440.07530.51850.058*
C30.1787 (2)0.0343 (2)0.3276 (2)0.0453 (5)
C40.2972 (2)0.2120 (3)0.5461 (2)0.0530 (5)
C50.1399 (2)0.0794 (2)0.2763 (2)0.0516 (5)
C60.1126 (2)0.2702 (2)0.1210 (2)0.0513 (5)
H6A0.13880.21050.05610.062*
H6B0.17130.36300.06690.062*
C70.0655 (2)0.3076 (2)0.1568 (2)0.0441 (5)
C80.1362 (3)0.3905 (2)0.2511 (2)0.0548 (5)
H80.07350.42080.29480.066*
C90.2976 (3)0.4282 (3)0.2806 (3)0.0618 (6)
H90.34290.48180.34530.074*
C100.3928 (3)0.3868 (2)0.2143 (2)0.0564 (6)
H100.50120.41350.23270.068*
C110.3234 (2)0.3050 (2)0.1206 (2)0.0501 (5)
C120.1607 (2)0.2639 (2)0.0923 (2)0.0476 (5)
H120.11630.20740.03030.057*
C130.4218 (3)0.2621 (3)0.0498 (3)0.0625 (6)
C140.3840 (4)0.1361 (3)0.7627 (3)0.0947 (10)
H14A0.46850.20770.71280.142*
H14B0.41990.04700.83090.142*
H14C0.29220.17970.81740.142*
C150.1386 (3)0.3432 (3)0.3310 (3)0.0756 (7)
H15A0.02770.33880.33430.113*
H15B0.16120.43580.40420.113*
H15C0.20460.33880.23290.113*
N10.2055 (2)0.26560 (19)0.32636 (19)0.0517 (4)
N20.16398 (19)0.18644 (18)0.25641 (17)0.0460 (4)
N30.4990 (3)0.2293 (3)0.0067 (3)0.0878 (7)
O10.2979 (2)0.34090 (19)0.5354 (2)0.0816 (6)
O20.3407 (2)0.09684 (17)0.65206 (18)0.0724 (5)
O30.1723 (2)0.21721 (16)0.36374 (17)0.0659 (5)
O40.0863 (2)0.05489 (18)0.1728 (2)0.0769 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0473 (12)0.0513 (12)0.0480 (12)0.0011 (9)0.0202 (9)0.0170 (9)
C20.0510 (12)0.0492 (12)0.0461 (12)0.0012 (9)0.0194 (9)0.0126 (9)
C30.0429 (11)0.0480 (11)0.0461 (11)0.0024 (8)0.0145 (9)0.0153 (9)
C40.0528 (13)0.0599 (14)0.0562 (13)0.0044 (10)0.0243 (10)0.0258 (11)
C50.0471 (12)0.0576 (13)0.0532 (13)0.0022 (9)0.0164 (10)0.0206 (10)
C60.0494 (12)0.0601 (13)0.0435 (12)0.0053 (9)0.0207 (9)0.0094 (9)
C70.0505 (12)0.0415 (11)0.0400 (11)0.0054 (8)0.0182 (9)0.0078 (8)
C80.0627 (14)0.0541 (13)0.0594 (13)0.0035 (10)0.0279 (11)0.0232 (10)
C90.0677 (15)0.0597 (14)0.0658 (15)0.0024 (11)0.0194 (12)0.0314 (12)
C100.0512 (13)0.0570 (13)0.0634 (14)0.0023 (10)0.0194 (11)0.0219 (11)
C110.0499 (12)0.0522 (12)0.0526 (12)0.0029 (9)0.0233 (10)0.0151 (9)
C120.0529 (12)0.0511 (12)0.0459 (11)0.0005 (9)0.0206 (9)0.0195 (9)
C130.0509 (13)0.0758 (16)0.0698 (16)0.0021 (11)0.0254 (12)0.0295 (12)
C140.140 (3)0.098 (2)0.0809 (19)0.0188 (18)0.075 (2)0.0427 (16)
C150.097 (2)0.0552 (15)0.0804 (18)0.0088 (13)0.0245 (15)0.0280 (13)
N10.0544 (10)0.0532 (10)0.0552 (11)0.0020 (8)0.0259 (8)0.0185 (8)
N20.0464 (9)0.0503 (10)0.0446 (9)0.0034 (7)0.0205 (7)0.0131 (7)
N30.0656 (14)0.124 (2)0.1012 (18)0.0028 (13)0.0437 (13)0.0557 (16)
O10.1237 (16)0.0589 (11)0.0919 (13)0.0097 (10)0.0644 (12)0.0358 (9)
O20.1047 (14)0.0650 (10)0.0687 (11)0.0110 (9)0.0542 (10)0.0268 (8)
O30.0894 (12)0.0511 (9)0.0636 (10)0.0076 (8)0.0321 (9)0.0164 (7)
O40.1025 (14)0.0705 (11)0.0837 (12)0.0033 (9)0.0579 (11)0.0317 (9)
Geometric parameters (Å, º) top
C1—N11.345 (2)C8—H80.9300
C1—C21.393 (3)C9—C101.387 (3)
C1—C41.482 (3)C9—H90.9300
C2—C31.375 (2)C10—C111.381 (3)
C2—H20.9300C10—H100.9300
C3—N21.369 (2)C11—C121.397 (3)
C3—C51.475 (3)C11—C131.452 (3)
C4—O11.195 (2)C12—H120.9300
C4—O21.325 (2)C13—N31.143 (3)
C5—O41.201 (2)C14—O21.455 (3)
C5—O31.334 (3)C14—H14A0.9600
C6—N21.471 (2)C14—H14B0.9600
C6—C71.514 (3)C14—H14C0.9600
C6—H6A0.9700C15—O31.444 (3)
C6—H6B0.9700C15—H15A0.9600
C7—C121.385 (2)C15—H15B0.9600
C7—C81.395 (3)C15—H15C0.9600
C8—C91.380 (3)N1—N21.347 (2)
N1—C1—C2111.68 (17)C10—C9—H9119.8
N1—C1—C4118.44 (18)C11—C10—C9118.7 (2)
C2—C1—C4129.88 (18)C11—C10—H10120.6
C3—C2—C1104.90 (17)C9—C10—H10120.6
C3—C2—H2127.6C10—C11—C12121.23 (18)
C1—C2—H2127.6C10—C11—C13119.1 (2)
N2—C3—C2107.05 (17)C12—C11—C13119.63 (19)
N2—C3—C5123.21 (17)C7—C12—C11119.83 (19)
C2—C3—C5129.74 (18)C7—C12—H12120.1
O1—C4—O2124.09 (19)C11—C12—H12120.1
O1—C4—C1124.3 (2)N3—C13—C11179.5 (3)
O2—C4—C1111.57 (19)O2—C14—H14A109.5
O4—C5—O3124.0 (2)O2—C14—H14B109.5
O4—C5—C3126.4 (2)H14A—C14—H14B109.5
O3—C5—C3109.59 (18)O2—C14—H14C109.5
N2—C6—C7112.47 (16)H14A—C14—H14C109.5
N2—C6—H6A109.1H14B—C14—H14C109.5
C7—C6—H6A109.1O3—C15—H15A109.5
N2—C6—H6B109.1O3—C15—H15B109.5
C7—C6—H6B109.1H15A—C15—H15B109.5
H6A—C6—H6B107.8O3—C15—H15C109.5
C12—C7—C8118.64 (19)H15A—C15—H15C109.5
C12—C7—C6120.28 (18)H15B—C15—H15C109.5
C8—C7—C6121.05 (17)C1—N1—N2104.90 (16)
C9—C8—C7121.12 (19)N1—N2—C3111.47 (15)
C9—C8—H8119.4N1—N2—C6118.28 (16)
C7—C8—H8119.4C3—N2—C6130.24 (16)
C8—C9—C10120.4 (2)C4—O2—C14115.33 (19)
C8—C9—H9119.8C5—O3—C15117.10 (18)
N1—C1—C2—C30.4 (2)C9—C10—C11—C13179.5 (2)
C4—C1—C2—C3179.1 (2)C8—C7—C12—C110.9 (3)
C1—C2—C3—N20.3 (2)C6—C7—C12—C11177.04 (18)
C1—C2—C3—C5179.23 (19)C10—C11—C12—C71.1 (3)
N1—C1—C4—O13.2 (3)C13—C11—C12—C7178.51 (18)
C2—C1—C4—O1176.3 (2)C2—C1—N1—N20.3 (2)
N1—C1—C4—O2177.21 (18)C4—C1—N1—N2179.24 (16)
C2—C1—C4—O23.3 (3)C1—N1—N2—C30.1 (2)
N2—C3—C5—O43.1 (3)C1—N1—N2—C6179.84 (16)
C2—C3—C5—O4176.4 (2)C2—C3—N2—N10.1 (2)
N2—C3—C5—O3177.39 (18)C5—C3—N2—N1179.45 (17)
C2—C3—C5—O33.1 (3)C2—C3—N2—C6179.55 (18)
N2—C6—C7—C12124.57 (19)C5—C3—N2—C60.9 (3)
N2—C6—C7—C857.5 (2)C7—C6—N2—N187.7 (2)
C12—C7—C8—C90.2 (3)C7—C6—N2—C392.6 (2)
C6—C7—C8—C9178.21 (19)O1—C4—O2—C142.8 (4)
C7—C8—C9—C101.3 (3)C1—C4—O2—C14176.8 (2)
C8—C9—C10—C111.1 (3)O4—C5—O3—C150.6 (3)
C9—C10—C11—C120.1 (3)C3—C5—O3—C15178.93 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O1i0.962.433.363 (3)163
C9—H9···O1ii0.932.533.348 (3)147
C6—H6A···O40.972.412.979 (3)117
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H13N3O4
Mr299.28
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)8.783 (3), 9.538 (4), 9.999 (4)
α, β, γ (°)68.42 (3), 71.79 (4), 82.13 (4)
V3)739.7 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.968, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
7555, 3338, 2093
Rint0.031
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.147, 1.05
No. of reflections3338
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O1i0.962.433.363 (3)162.7
C9—H9···O1ii0.932.533.348 (3)147.0
C6—H6A···O40.972.412.979 (3)117.3
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1.
 

Acknowledgements

This work was supported financially by the Southeast University Fund for Young Researchers (4007041027).

References

First citationChambers, D., Denny, W. A., Buckleton, J. S. & Clark, G. R. (1985). J. Org. Chem. 50, 4736–4738.  CSD CrossRef CAS Web of Science Google Scholar
First citationFu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, H. H., Cain, B. F., Denny, W. A., Buckleton, J. S. & Clark, G. R. (1989). J. Org. Chem. 54, 428–431.  CSD CrossRef CAS Web of Science Google Scholar
First citationRadl, S., Hezky, P., Konvicka, P. & Krejci, J. (2000). Collect. Czech. Chem. Commun. 65, 1093–1108.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, J. & Zhao, H. (2008a). Acta Cryst. E64, o965.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, J. & Zhao, H. (2008b). Acta Cryst. E64, o986.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, J. & Zhao, H. (2008c). Acta Cryst. E64, o1436.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1132
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds