metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­methyl­tin(IV)]-μ-cis-cyclo­hexane-1,2-di­carboxyl­ato]

aDepartment of Chemistry, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: macl@lcu.edu.cn

(Received 3 January 2009; accepted 4 February 2009; online 11 February 2009)

The title complex, [Sn(CH3)2(C8H10O4)]n, was synthesized from cis-cyclo­hexane-1,2-dicarboxylic acid and dimethyl­tin dichloride. The complex has a bridging bis-bidentate carboxyl­ate group resulting in a zig-zag chain structure parallel to [001]. The Sn atom is six-coordinated and displays a distorted octa­hedral geometry.

Related literature

For background to organotin complexes, see: Gielen (2002[Gielen, M. (2002). Appl. Organomet. Chem. 16, 481-494.]); Han et al. (2007[Han, Y., Zhang, R. & Wang, D. (2007). Acta Cryst. E63, m776-m777.]). For related structures, see: Swisher et al. (1984[Swisher, R. G., Vollano, J. F., Chandrasekhar, V., Day, R. O. & Holmes, R. R. (1984). Inorg. Chem. 23, 3147-3152.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)2(C8H10O4)]

  • Mr = 318.92

  • Monoclinic, P 21 /c

  • a = 10.0880 (16) Å

  • b = 10.430 (2) Å

  • c = 11.592 (2) Å

  • β = 99.041 (2)°

  • V = 1204.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.11 mm−1

  • T = 298 (2) K

  • 0.32 × 0.19 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.551, Tmax = 0.715

  • 6188 measured reflections

  • 2117 independent reflections

  • 1822 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.062

  • S = 1.19

  • 2117 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—O3 2.089 (3)
Sn1—C9 2.089 (4)
Sn1—C10 2.098 (4)
Sn1—O1 2.102 (3)
Sn1—O4 2.570 (3)
Sn1—O2 2.660 (3)
C9—Sn1—C10 137.14 (18)

Data collection: SMART (Bruker, 1996[Bruker (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1996[Bruker (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, organotin complexes have been attracting increasing attention partly owing to their determinately or potentially pharmic value, which have been reported many before (Gielen, 2002), and also for the versatile molecular structure and supramolecular architecture exhibited by these complexes (Han et al., 2007). In order to explore the relationships between the properties and structures, we report here the structure of the title complex. Fig. 1 the structure of (I) showing one-dimensional extended polymeric network, and the one-dimensional chain along [001] direction of complex is shown in Fig. 2. Sn atom is six coordinated and displays a octahedral distorted geometry.

Related literature top

For background to organotin complexes, see: Gielen (2002); Han et al. (2007). For related literature, see: Swisher et al. (1984).

Experimental top

The reaction was carried out under nitrogen atmoshpere. cis-cyclohexane-1,2-dicarboxylic acid (0.173 g, 1 mmol) was added to the solution of benzene(30 ml) with sodium ethoxide (0.136 g, 2 mmol) in a Schlenk flask. After stirring for 10 min, dimethyltin dichloride (0.220 g, 1 mmol) was added to the mixture. The mixture was kept at 328 K for 12 h. After cooling down to the room temperature, the solution was filtered. The solvent of the filtrate was gradually removed by evaporation under vacuum until a solid product was obtained. The solid was then recrystallized from aether. Colorless single crystals of the title complex were obtained after one week. Yield, 86%. Analysis calculated for C10H16O4Sn: C 48.76, H 6.55; found: C 48.66, H 6.68. The elemental analyses were performed with PERKIN ELMER MODEL 2400 SERIES II.

Refinement top

All H atoms were placed in geometrically idealized positions methyl (C—H = 0.96 Å), methylene (C—H = 0.97 Å), (C—H = 0.98 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.5Ueq(CH3), Uiso(H) = 1.2Ueq(CH2), Uiso(H) = 1.2Ueq(CH).

Computing details top

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the structure of (I) showing one-dimensional extended polymeric network, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity. [Symmetry codes: (a) x, 1/2 - y, -1/2 + z; (b) x, 1/2 - x, 1/2 + z]
[Figure 2] Fig. 2. The one-dimensional zigzag chain of the title complex
catena-Poly[[dimethyltin(IV)]-µ-cis-cyclohexane-1,2- dicarboxylato] top
Crystal data top
[Sn(CH3)2(C8H10O4)]F(000) = 632
Mr = 318.92Dx = 1.759 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4238 reflections
a = 10.0880 (16) Åθ = 2.7–28.3°
b = 10.430 (2) ŵ = 2.11 mm1
c = 11.592 (2) ÅT = 298 K
β = 99.041 (2)°Block, colourless
V = 1204.5 (4) Å30.32 × 0.19 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2117 independent reflections
Radiation source: fine-focus sealed tube1822 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1112
Tmin = 0.551, Tmax = 0.715k = 1112
6188 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0181P)2 + 1.262P]
where P = (Fo2 + 2Fc2)/3
2117 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Sn(CH3)2(C8H10O4)]V = 1204.5 (4) Å3
Mr = 318.92Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0880 (16) ŵ = 2.11 mm1
b = 10.430 (2) ÅT = 298 K
c = 11.592 (2) Å0.32 × 0.19 × 0.17 mm
β = 99.041 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2117 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1822 reflections with I > 2σ(I)
Tmin = 0.551, Tmax = 0.715Rint = 0.022
6188 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.19Δρmax = 0.52 e Å3
2117 reflectionsΔρmin = 0.43 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.67183 (3)0.15366 (3)0.10133 (2)0.03534 (10)
O10.8345 (3)0.2746 (3)0.1623 (2)0.0437 (7)
O20.6720 (3)0.3482 (3)0.2497 (3)0.0459 (7)
O30.8140 (3)0.0831 (3)0.0045 (2)0.0427 (7)
O40.6338 (3)0.0337 (3)0.0441 (2)0.0448 (7)
C10.8867 (4)0.4597 (4)0.2822 (3)0.0333 (9)
H10.95420.41750.33990.040*
C20.8184 (4)0.5633 (3)0.3471 (3)0.0330 (9)
H20.89060.61630.38880.040*
C30.7305 (4)0.6523 (4)0.2649 (4)0.0413 (10)
H3A0.69670.72020.30950.050*
H3B0.65420.60490.22460.050*
C40.8092 (5)0.7109 (4)0.1751 (4)0.0493 (11)
H4A0.74950.76370.12090.059*
H4B0.87970.76550.21490.059*
C50.8706 (5)0.6077 (5)0.1080 (4)0.0548 (12)
H5A0.79980.55750.06300.066*
H5B0.92240.64750.05390.066*
C60.9609 (4)0.5204 (4)0.1905 (4)0.0459 (11)
H6A1.03660.56940.22960.055*
H6B0.99560.45310.14570.055*
C70.7883 (4)0.3568 (4)0.2295 (3)0.0366 (9)
C80.7475 (4)0.0040 (3)0.0606 (3)0.0344 (9)
C90.5448 (4)0.2734 (4)0.0107 (4)0.0503 (11)
H9A0.47730.30830.03020.075*
H9B0.50260.22490.07680.075*
H9C0.59620.34190.03690.075*
C100.6548 (5)0.0271 (4)0.2389 (4)0.0476 (11)
H10A0.58940.05940.28340.071*
H10B0.74010.01970.28850.071*
H10C0.62710.05560.20770.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03871 (17)0.03394 (16)0.03343 (16)0.00183 (14)0.00588 (11)0.00006 (13)
O10.0425 (16)0.0383 (17)0.0494 (18)0.0012 (14)0.0043 (14)0.0157 (14)
O20.0424 (17)0.0444 (17)0.0523 (18)0.0088 (14)0.0116 (14)0.0093 (14)
O30.0429 (16)0.0443 (17)0.0414 (16)0.0032 (14)0.0083 (13)0.0124 (13)
O40.0463 (17)0.0475 (17)0.0436 (17)0.0052 (14)0.0167 (14)0.0006 (13)
C10.031 (2)0.030 (2)0.038 (2)0.0017 (17)0.0040 (17)0.0027 (17)
C20.035 (2)0.027 (2)0.036 (2)0.0024 (16)0.0042 (17)0.0000 (16)
C30.042 (2)0.035 (2)0.048 (2)0.003 (2)0.0098 (19)0.0068 (19)
C40.051 (3)0.044 (3)0.054 (3)0.003 (2)0.011 (2)0.016 (2)
C50.065 (3)0.058 (3)0.044 (3)0.011 (2)0.018 (2)0.006 (2)
C60.042 (2)0.049 (3)0.050 (3)0.009 (2)0.018 (2)0.009 (2)
C70.042 (2)0.034 (2)0.032 (2)0.0055 (19)0.0026 (18)0.0016 (18)
C80.046 (2)0.025 (2)0.031 (2)0.0025 (18)0.0038 (18)0.0057 (16)
C90.047 (3)0.051 (3)0.052 (3)0.002 (2)0.003 (2)0.011 (2)
C100.058 (3)0.045 (3)0.041 (2)0.004 (2)0.009 (2)0.007 (2)
Geometric parameters (Å, º) top
Sn1—O32.089 (3)C3—H3A0.9700
Sn1—C92.089 (4)C3—H3B0.9700
Sn1—C102.098 (4)C4—C51.516 (6)
Sn1—O12.102 (3)C4—H4A0.9700
Sn1—O42.570 (3)C4—H4B0.9700
Sn1—O22.660 (3)C5—C61.517 (6)
O1—C71.294 (4)C5—H5A0.9700
O2—C71.235 (5)C5—H5B0.9700
O3—C81.298 (4)C6—H6A0.9700
O4—C81.232 (5)C6—H6B0.9700
C1—C71.523 (5)C8—C2ii1.509 (5)
C1—C61.530 (5)C9—H9A0.9600
C1—C21.540 (5)C9—H9B0.9600
C1—H10.9800C9—H9C0.9600
C2—C8i1.509 (5)C10—H10A0.9600
C2—C31.514 (5)C10—H10B0.9600
C2—H20.9800C10—H10C0.9600
C3—C41.532 (6)
O3—Sn1—C9106.41 (15)C5—C4—C3111.2 (4)
O3—Sn1—C10109.39 (15)C5—C4—H4A109.4
C9—Sn1—C10137.14 (18)C3—C4—H4A109.4
O3—Sn1—O180.02 (10)C5—C4—H4B109.4
C9—Sn1—O1102.72 (15)C3—C4—H4B109.4
C10—Sn1—O1105.95 (15)H4A—C4—H4B108.0
O3—Sn1—O454.83 (10)C6—C5—C4110.9 (4)
C9—Sn1—O491.89 (15)C6—C5—H5A109.5
C10—Sn1—O489.93 (14)C4—C5—H5A109.5
O1—Sn1—O4134.84 (9)C6—C5—H5B109.5
O3—Sn1—O2133.28 (9)C4—C5—H5B109.5
C9—Sn1—O283.34 (15)H5A—C5—H5B108.1
C10—Sn1—O288.85 (14)C5—C6—C1112.1 (3)
O1—Sn1—O253.39 (9)C5—C6—H6A109.2
O4—Sn1—O2171.54 (9)C1—C6—H6A109.2
C7—O1—Sn1105.3 (2)C5—C6—H6B109.2
C7—O2—Sn180.6 (2)C1—C6—H6B109.2
C8—O3—Sn1102.9 (2)H6A—C6—H6B107.9
C8—O4—Sn182.2 (2)O2—C7—O1120.5 (4)
C7—C1—C6111.9 (3)O2—C7—C1123.7 (4)
C7—C1—C2112.1 (3)O1—C7—C1115.8 (3)
C6—C1—C2110.8 (3)O4—C8—O3119.6 (4)
C7—C1—H1107.3O4—C8—C2ii124.3 (3)
C6—C1—H1107.3O3—C8—C2ii116.1 (3)
C2—C1—H1107.3Sn1—C9—H9A109.5
C8i—C2—C3113.7 (3)Sn1—C9—H9B109.5
C8i—C2—C1110.9 (3)H9A—C9—H9B109.5
C3—C2—C1112.7 (3)Sn1—C9—H9C109.5
C8i—C2—H2106.3H9A—C9—H9C109.5
C3—C2—H2106.3H9B—C9—H9C109.5
C1—C2—H2106.3Sn1—C10—H10A109.5
C2—C3—C4111.0 (3)Sn1—C10—H10B109.5
C2—C3—H3A109.4H10A—C10—H10B109.5
C4—C3—H3A109.4Sn1—C10—H10C109.5
C2—C3—H3B109.4H10A—C10—H10C109.5
C4—C3—H3B109.4H10B—C10—H10C109.5
H3A—C3—H3B108.0
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Sn(CH3)2(C8H10O4)]
Mr318.92
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.0880 (16), 10.430 (2), 11.592 (2)
β (°) 99.041 (2)
V3)1204.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.11
Crystal size (mm)0.32 × 0.19 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.551, 0.715
No. of measured, independent and
observed [I > 2σ(I)] reflections
6188, 2117, 1822
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.062, 1.19
No. of reflections2117
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.43

Computer programs: SMART (Bruker, 1996), SAINT (Bruker, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Sn1—O32.089 (3)Sn1—O12.102 (3)
Sn1—C92.089 (4)Sn1—O42.570 (3)
Sn1—C102.098 (4)Sn1—O22.660 (3)
C9—Sn1—C10137.14 (18)
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20741008) for financial support.

References

First citationBruker (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGielen, M. (2002). Appl. Organomet. Chem. 16, 481–494.  Web of Science CrossRef CAS Google Scholar
First citationHan, Y., Zhang, R. & Wang, D. (2007). Acta Cryst. E63, m776–m777.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwisher, R. G., Vollano, J. F., Chandrasekhar, V., Day, R. O. & Holmes, R. R. (1984). Inorg. Chem. 23, 3147–3152.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds